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1.0INTRODUCTION

Finite-difference (FD) and finite-volume (FV) methods are very powerful

techniques for obtaining solutions to partial differential equations that govern fluid flow

problems. However, in order to use these methods, it is necessary to replace the spatial

domain of the problem being studied by a finite number of discrete points known as

grid points. The process of replacing a spatial domain by a system of grid points is

referred to as grid generation. Grid generation is a very important part of FD and FV

methods because the system of grid points used strongly affects the accuracy,

efficiency, and ease with which these methods generate solutions. In some instances,

the ability or inability to generate an "acceptable" grid system determines whether FD

or FV methods can or cannot be used.



Even though tremendous advances have been made in grid generation

techniques during the past fifteen years (refs. 1 to 10), the generation of acceptable

grid systems for geometrically complex three-dimensional spatial domains remains a

difficult problem. Recently, a very efficient and versatile computer program, called

GPdD2D/3D, has been developed which can generate grid systems inside complex-

shaped two- and three-dimensional (2- and 3-D) spatial domains. GR, ID2D/3D is so

efficient that it is configured to run on PCs or PC compatible computers, though it can

also be used on workstations and mainframes. The high efficiency of GRID2D/3D

makes it especially useful for spatial domains that deform with time. This is because

for such spatial domains, a different grid system must be generated at each time level,

and the number of time levels can be thousands or more. This technical memorandum

describes the theory and method behind GPdD2D/3D and the types of grid systems

that it can generate. Part 2 of this technical memorandum (to be published under a

separate cover) will contain the program, GR, ID2D/3D, and a user's manual.

1.1 Types of Grid Systems That Can Be Generated by GRID2D/3D

Eiseman and Erlebacher (ref. 9) classified all possible grid systems that can be

used by FD and FV methods as follows. At the broadest level, a grid system can be

classified as structured, unstructured, or mixed depending upon how the grid points

are connected to each other (fig. 1-1). A structured grid system, in turn. can be

classified as a single grid or a composite grid. A single grid is one that is based on a

single boundary-fitted coordinate system, whereas a composite grid is made up of two

or more single grids patched together with each single grid having a different

boundary-fitted coordinate system. Depending upon how the different single grids are

patched together, a composite grid can further be classified as completely

discontinuous, partially discontinuous, partially continuous, or completely continuous
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(fig. 1-2). The continuity or discontinuity referred to here is concerned with that of

the different boundary-fitted coordinate systems at locations where they are patched

together in a composite grid.

Of the grid systems mentioned above, the unstructured grid system is the most

versatile and the easiest to generate, especially for complicated-shaped spatial domains.

But, the use of unstructured grid systems with FD and FV methods is still at a state

of development (refs. 11 to 16). Presently, FD and FV methods almost exclusively use

structured grid systems, and that is the type of grid system GRID2D/3D generates.

When a structured grid system is used with a FD or a FV method to obtain

solutions to fluid flow problems, the structured grid system generated by GRID2D/3D

or any other computer program should satisfy a number of conditions and they are

1. The total number of grid points in the grid system should be kept to the

minimum needed for the FD or FV method to yield solutions of the desired

accuracy. This condition is important for computational efficiency and can

be achieved by clustering grid points in regions where they are needed (e.g.,

regions where gradients of the flow are large) and scattering them elsewhere.

2. One set of grid lines (coordinate lines of the boundary-fitted coordinate

system) always should coincide with the boundary of the spatial domain

regardless of the geometric complexity or motion of that boundary (i.e., the

grid system should be boundary conforming). This condition is important

because it enables FD and FV methods to implement boundary conditions

easily and accurately for geometrically complex and/or deforming spatial

domains.

3. Grid lines that intersect a boundary should intersect that boundary

perpendicularly so that derivative boundary conditions can be implemented

more easily and accurately. At the interior of the spatial domain, the angle



of intersection between grid lines only needs to be nearly orthogonal (i.e.,

between 45 and 135 degrees).

4. The spacings between grid points should change slowly from a region where

grid points are concentrated to a region where grid points are sparsely

distributed, especially in regions where gradients of the flow are large. This

condition is important because Fourier components which make up the

solution reflect and refract at interfaces where grid spacings change.

5. One set of grid lines should align with the flow direction. This condition is

important for convection dominated flows when the aspect ratio of the

control volume about each grid point is very high and/or when the thin layer

Navier-Stokes equations are used to study such flows.

For complicated 2- and 3-D flows within geometrically complex spatial domains,

the flow field varies considerably from one region to another. Thus, it is usually not

possible to generate a single grid that would satisfy all of the above conditions at every

part of the spatial domain. For such fluid flow problems, it is often necessary to

generate a number of different single grids, each of which satisfies the above five

conditions at a different part of the spatial domain. These single grids are then

patched together to form a composite grid.

As noted earlier, depending upon how the different single grids are patched

together, a composite grid can be completely discontinuous, partially discontinuous,

partially continuous or completely continuous. In general, the more discontinuous a

composite grid is, the easier it is to generate that grid and the harder it is to use that

grid to obtain solutions.

Since the computer program, GRID2D/3D, is capable of generating single grids

as well as the different types of composite grids, we briefly discuss below the

advantages and disadvantages of the various types of composite grids in order to know

when a specific type should be used.



1.1.1 Completely Discontinuous Composite Grids. - The major advantage of

completely discontinuous composite grids, such as the chimera grid (refs. 17 to 21 and

fig. 1-2(a)), is that they are the easiest to generate. To illustrate how chimera grids

are generated, consider the spatial domain for the flow past an entire aircraft. To

generate a chimera grid for such a spatial domain, all one has to do is generate a series

of single grids, one about each component of the aircraft; for example one about the

fuselage, another about the wing, still another about the nacelle, and so on. The

patching process simply involves laying each single grid over the appropriate

component of the aircraft, deciding the amount of overlap of different single grids, and

ensuring that the entire spatial domain is filled with grid points. Since the geometry

for each single grid can be made relatively simple and patching is trivial, the grid

generation process is straightforward.

Another important advantage of this type of grid is that the structure of each

single grid can be different from each other; for example, one single grid may have a C-

C structure, while another may have an O-O or an O-H structure. Thus, it is possible

to optimize each single grid for a different part of the spatial domain.

Still another important advantage of this type of grid is that it is the easiest to

do local grid refinement. For a chimera grid, one can refine the grid at any location by

simply generating a very fine single grid and then overlaying it wherever desired.

Also, this type of grid can easily be applied to problems in which one or more

objects are moving relative to another object, such as the launching of missiles from an

aircraft (ref. 20). For such problems, the completely discontinuous composite grid may

be the best type of grid to use.

Finally, since composite grids are composed of a series of single grids, it is

possible to do computations on one single grid at a time. This will reduce computer

memory requirements considerably since only information on one single grid needs to
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reside in the computer at any one time. This advantage is shared by all composite

grids, continuous or discontinuous.

The major disadvantage of completely discontinuous composite grids is that it

is more difficult to obtain solutions on such grids when using FD and FV methods than

the other types of composite grids. This is because interpolation and averaging

schemes are needed to transfer information from one single grid to another when and

wherever two or more single grids overlap (refs. 18 to 21). Also, the schemes must be

developed to ensure that boundary conditions are implemented correctly for the entire

problem and that certain properties, such as the conservative and the transportive

properties, are maintained in regions where two or more single grids overlap.

1.1.2 Partially Discontinuous Composite Grids. - Partially discontinuous

composite grids (fig. 1-2(b)) are generated in the following manner. First, the spatial

domain of the problem being studied is partitioned into a number of nonoverlapping,

contiguous zones or blocks. Next, a single grid is generated within each zone. Finally,

patching of the single grids simply involves putting each of the single grids into its

respective zone.

Thus, partially discontinuous composite (PDC) grids differ from completely

discontinuous composite (CDC) grids in that the single grids of PDC grids do not

overlap each other. However, PDC and CDC grids have two important similarities.

First, each single grid in both cases can have a structure that is different from each

other. Second, the number of grid points in each single grid can be different from

each other. Because of these two important similarities, the major advantages of PDC

grids are very similar to those of the CDC grids. However, since single grids in a PDC

grid do not overlap each other, PDC grids are somewhat more difficult to generate but

are easier to use than CDC grids.
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Examplesof PDC grids include the "zonal" or "patched" grids (refs. 22 to

25). For such grids, the main difficulty is the implementation of boundary conditions

at the interfaces where the different single grids of the PDC grid meet. References 22

to 25 describe a procedure for implementing such boundary conditions in a way that

would ensure maintenance of the conservative property.

1.1.3 Partially and Completely Continuous Composite Grids. - Completely

continuous composite (CCC) grids are grid systems in which all grid lines (i.e.,

coordinate lines of the boundary-fitted coordinate system) and all of their derivatives of

every order are continuous at all interfaces where different single grids meet. In

general, it is not necessary to construct CCC grids. Typically, FD and FV methods

only require continuity of the grid lines and their first and, occasionally, second-order

derivatives at the interfaces where different single grids meet. Composite grid systems

with this limited degree of continuity are referred to as partially continuous composite

(PCC) grids.

Figure 1-2(c) shows a PCC grid in which grid lines are all continuous, but first-

order derivatives of the grid lines have discontinuities. It can readily be seen in that

figure that the slope of the grid lines and the spacing between the grid lines change

suddenly at the interface where the two single grids meet. Figure 1-2(d) shows a PCC

grid in which the grid lines and their first-order derivatives are continuous everywhere

including the interface where the two single grids meet. Such PCC grids have the same

appearance as CCC grids.

The major advantage of PCC grids of the type shown in figure 1-2(d) is that

this is the easiest grid system for FD and FV methods to use. This is because

boundary conditions can be implemented easily at interfaces where different single grids

meet. In fact, it is not even necessary to treat the interfaces where different single

grids meet as boundaries since computations can be carried across them. For PCC



grids, the complete spatial domain of the problem can be mapped onto a single

transformed domain, even though different boundary-fitted coordinate systems have

been used in different parts of the spatial domain (fig. 1-3).

Here, it is important to note that not all grid systems which appear to be

continuous are continuous. Figure 1-4 shows a composite grid that appears to be

continuous but belongs to the PDC grids because it is impossible to map the entire

spatial domain onto one transformed domain.

The major disadvantage of PCC grids is that they are the mostdifficult

to generate when compared to CDC and PDC grids. Another disadvantage of PCC

grids is that the structure and number of grid points in each single grid must satisfy

certain compatibility conditions to ensure continuity. These compatibility conditions

make it more difficult to optimize each single grid for a specific area. It also makes it

more difficult to do local grid refinement.

Thus, there are many spatial domains for which it is extremely difficult, if not

impossible, to generate a PCC grid that is acceptable. However, when it is possible,

then the generation of such grids is worthwhile because of the ease with which they

can be used. References 26-31 show a number of examples of how to construct PCC

grids for complex-shaped 2- and 3-D spatial domains.

1.2 Grid Generation Methods Used in GRID2D/3D and Why

In the previous section, we discussed the various types of grid systems that can

be generated by GRID2D/3D and when a specific type should be used. In this

section, we briefly outline the different types of advanced grid generation techniques

and give reasons why GR.ID2D/3D is based on one class of methods.

All grid generation techniques can be divided into two major classes -

differential equation methods and algebraic methods. Differential equation methods
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generate grid systems by solving a system of partial differential equations (PDEs)

which describes how grid points are to be distributed within the spatial domain.

Examples of differential equation methods include methods based on elliptic PDEs

(e.g., harmonic mapping, 2- and 3-D quasilinear systems), methods based on hyperbolic

PDEs (e.g., orthogonal trajectories and field methods), and methods based on parabolic

PDEs (refs. 2, 3, and 8). Most of these methods require a significant amount of

computational effort since the systems of PDEs that must be solved are quasilinear and

often as complicated as the PDEs that govern the fluid flow problem. This is

especially true when using these methods to generate grid systems in 3-D spatial

domains and in spatial domains that deform with time.

Algebraic methods generate grid systems by interpolating between boundaries

of the spatial domain. Since no PDE needs to be solved in the grid generation process,

algebraic grid generation methods are computationally much more efficient than

differential equation methods. Examples of algebraic grid generation methods include

shearing transformations (ref. 32) and transfinite interpolation methods (refs. 33 to

35). Transfinite interpolation methods include the Two-Boundary Method (refs. 36

and 37), Four-Boundary Method (refs. 38 and 39), Six-Boundary Method (refs. 39 and

40), and multisurface methods (refs. 41 to 43).

Whether one uses a differential equation method or an algebraic method, the

grid generation process is always iterative. This is because the "acceptable" grid

system is arrived at via trial and error after generating a series of unsatisfactory grids.

The effort of the iterative process is, of course, compounded many times for spatial

domains which can deform with time since, for such domains, a different grid system is

needed for each time level and the number of time levels can be thousands or more.

Hence, the efficiency of the grid generation process is extremely important for problems

with 3-D spatial domains and for problems in which the spatial domain can deform.
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SinceGRID2D/3D is intended for complex-shaped 2- and 3-D spatial domains

and for spatial domains that can deform with time, GRID2D/3D generates grid

systems by using algebraic grid generation methods. Depending upon the complexity

and dimensionality of the spatial domain, GRID2D/3D uses one of the following three

methods, all of which are very similar and are based on transfinite interpolation: the

Two-Boundary Method, the Four-Boundary Method, and the Six-Boundary Method.

These methods were chosen because of their high efficiency and their ability to provide

very precise controls over the distribution of grid points in the spatial domain when

used in conjunction with stretching functions (refs. 44 and 45). Also, these methods

can generate grid lines that intersect boundaries orthogonally.

By using these algebraic grid generation methods, GRID2D/3D generates single

grids with grid lines that are continuous and differentiable everywhere up to the

second-order. GRID2D/3D generates composite grids by patching together two or

more single grids. The patching can be discontinuous or continuous. For continuous

composite grids, the grid lines are continuous and differentiable everywhere up to the

second-order except at interfaces where different single grids meet. At interfaces where

different single grids meet, the grid lines are only differentiable up to the first-order.

In order to use the Two-, Four-, and Six-Boundary Methods to generate grid

systems, the boundaries of the spatial domains must be represented mathematically in

parametric form. This is a difficult problem for complicated-shaped spatial domains

because the boundaries of such domains are complicated as well. In GRID2D/3D,

parametric equations for boundary curves of 2-D spatial domains are generated by

either spline interpolation (ref. 46) or tension-spline interpolation (ref. 47). Parametric

equations for boundary surfaces of 3-D spatial domains can be generated by a number

of techniques including linear Coons' interpolation (ref. 33), bidirectional spline

interpolation (refs. 48 and 49), and bihyperbolic spline interpolation (ref. 50). In

GRID2D/3D, parametric equations for these 3-D surfaces are generated by either
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linear Coon's interpolation, bihyperbolic spline interpolation, or a new technique

referred to as 3-D bidirectional Hermite interpolation.

The details of the algebraic grid generation methods used in GRID2D/3D are

given in Sections 2.0 and 3.0. Examples of single and composite grids generated by

GRID2D/3D are given in Section 4.0. A listing of the computer program,

GlgID2D/3D, and a user's manual will be found in Part 2 of this technical

memorandum which will be published under a separate cover.
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2.0 THE TWO-, FOUR-, AND SIX-BOUNDARY METHODS OF ALGEBRAIC GRID GENERATION

As noted in Section 1.0, GR.ID2D/3D generates grid systems by using one of the

following three algebraic grid generation methods: the Two-Boundary Method, the Four-

Boundary Method, and the Six-Boundary Method. All three of these methods are based on a

general technique known as transfinite interpolation (refs. 33 and 35). The Two-Boundary

Method, described by Smith (ref. 36) and Yang and Shih (ref. 37), is intended for problems in

which it is only necessary to map correctly two arbitrary-shaped boundaries of the spatial

domain. For problems in which it is necessary to map correctly all of the boundaries of the

spatial domain or at least more than two of them, then the Four-Boundary Method or the Six-

Boundary Method, described by Vinokur and Lombard (ref. 38), Rizzi and Eriksson (ref. 39),

and Eriksson (ref. 40), can be used. All three of these methods can generate grid systems in 3-

D spatial domains; the Two- and Four-Boundary Methods can also generate grid systems in 2-

D spatial domains.

In this section, the details of these methods are described by using each of them to

generate either a 2-D or a 3-D grid system. Our step-by-step descriptions of the methods

follow closely those of Yang and Shih (ref. 37) and Shih (ref. 51). It is our intention to present

the methods in a clear manner so that the reader might easily implement any one of the three

methods.

2.1 The Two-Boundary Method

As mentioned previously, the Two-Boundary Method is intended for problems in which

it is only necessary to map correctly two arbitrary-shaped boundaries of the spatial domain.
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There are a number of problems for which this holds (Section 6-4-3 of ref. 51); a few example

problems with such spatial domains are shown in figure 2-1.

Here, we note that the Two-Boundary Method can correctly map all of the boundaries

of a spatial domain if the remaining boundaries are straight lines in the 2-D case or flat

surfaces in the 3-D case. Figures 2-1(a) and 2-1(d) illustrate these cases.

The Two-Boundary Method involves the following eight major steps (refs. 37 and 51):

1. Define the nature of the coordinate transformation.

2. Select a time-stretching function.

3. Select the two boundaries of the spatial domain that must be mapped

correctly. These two boundaries cannot touch each other at any point.

4. Describe the two boundaries selected in Step 3 in parametric form.

5. Define curves that connect the two boundaries using transfinite

interpolation.

6. Discretize the domain (i.e., replace the continuous domain of the problem by

time levels and grid points).

7. Control the distribution of the grid points with stretching functions.

8. Calculate the metric coefficients needed by the FD or the FV method to

obtain solutions.

The details of these eight steps of the Two-Boundary Method are described below by

generating a grid system in a 3-D, deforming spatial domain shown in figure 2-2(a) for the

problem of compressible flow through a converging-diverging channel. The spatial domain of

interest is the region bounded by surfaces 1 through 6 in figure 2-2(a). The spatial domain

deforms because surfaces 1 and 2 deform with time.

Step 1 Define the Coordinate Transformation. The first step of the Two-

Boundary Method is to define the coordinate transformation between the coordinate system of

the spatial domain and the boundary-fitted coordinate system of the transformed domain. For

13



3-D spatial domains in which grid points are allowed to move, grid generation involves the

determination of the following coordinate transformation:

(x,y,z,t) ,--, (_,,7,¢,r)

or, more specifically,

(2.1a)

t = t(r) (2.1b)

x = z(_,o,i,T) (2.1c)

u- u(_,o,_,r) (2.1d)

z = z(_,o,¢,_) (2.1e)

where x, y, z, and t represent the coordinate system of the spatial domain and _, 7, _, and r

represent the boundary-fitted coordinate system of some transformed domain (fig. 2-2).

Step 2 Select a Time-Stretching Function. The next step is to define a

relationship between t and v. For our example, we set t equal to r; that is,

t- r (2.2)

Thus, no time-stretching function is used. Time stretching may be useful when variable time-

step sizes are used with FD or FV schemes that involve information at more than two time

levels.

Step 3 - Select Two Boundaries of the Spatial Domain. The third step is to

select the two boundaries of the spatial domain that are to be mapped correctly. These two

boundaries must not intersect each other at any point. For the spatial domain of figure 2-

2(a), we select boundary surfaces 1 and 2.
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Since _, 7, ( and r represent a boundary-fitted coordinate system, boundary surfaces of

the spatial domain in the x-_z-t coordinate system must correspond to coordinate planes in

the _-r/-(-r coordinate system. We choose surfaces 1 and 2 to correspond to coordinate planes

= 0 and q = 1, respectively (fig. 2-2); that is,

and

X 1 ----x(_, 71----0,if, 7-) ----Xi(_,¢,7-)

Y1 -_ Y(_, r/_-O, ¢, 7") ----Y1(_,(_,r)

z_ = z(_, 7=0, _, _) = z_(_,_,_)

X 2 = x((, y=l, _, r) = X2((,(,r )

Y2 = Y((, q=l, (, r) = Y2((,_,r)

Z 2 = z(_, 7=1, (, r) = Z2(_,¢,r )

(2.3a)

(2.3b)

(2.3c)

(2.4a)

(2.4b)

(2.4c)

Here, Xl, Y1, and Z 1 are the x-, y-, and z-coordinates of surface 1, and X2, Y2, and Z 2

are the x-, y-, and z-coordinates of surface 2. The remaining four boundaries -- surfaces 3, 4, 5,

and 6 -- are mapped to coordinate planes _ ---- 0, _ = 1, _ = 0, and _ = 1, respectively (fig.

2-2).

Step 4 - Describe the Two Boundaries Selected in Parametric Form. Once the two

boundaries have been selected, the next step is to represent these two boundaries in parametric

form as suggested by the form of equations (2.3) and (2.4). Equations (2.3) and (2.4) also tell

us that the three parameters which must be used to describe surfaces 1 and 2 are _, _, and v.

Keep in mind that had we chosen different coordinate planes in the transformed domain for

our boundaries, these parameters could have been different.

In this example, we assume that the parametric equations describing surfaces 1 and 2

are given and they are

X 1 = _ / L x (2.5a)

Y1 = A sin(wr) [1 -- cos(2 7r _)] [1 -- cos(2 _r _)] (2.5b)

Z 1 = _ / Ly (2.5c)
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and

X2 -----_ / Lx

Y2 = Ly - A sin(wr) [1 - cos(2 r ¢)] [1 -- cos(2 _r ¢)]

Z 2 = ¢/ Ly

(2.6a)

(2.6b)

(2.6c)

where A, w, Lx, Ly, and L z are given constants.

For most problems, parametric equations describing the boundaries of spatial domains

are not given. What is usually given are sets of coordinates which describe the positions of a

finite number of discrete points located on the boundary, and numerical methods must be used

to generate the required parametric equations. The numerical methods used in GPdD2D/3D

for this purpose are described in Section 3.0.

Step 5 - Define Curves Connecting Boundaries Using Transfinite Interpolation. A

number of different transfinite interpolation techniques can be used to derive curves which

connect the two boundaries chosen in Step 3. Here, we consider two such methods: transfinite

interpolation based on Lagrange interpolation and transfinite interpolation based on Hermite

interpolation.

Transfinite interpolation based on Lagrange interpolation is also known as linearly

blended transfinite interpolation. When this technique is used to generate connecting curves

between surfaces 1 and 2, the resulting curves have the following functional form:

• (_,_,C,_) = x_(_,C,_)

y((,rl,_,r ) = Y1(_,(,r)

z(_,_,C,_) = z_(_,i,_)

11(rl) + X2(_,_,v ) /2(71) (2.7a)

ll(rl) + y2(_,_,r) 12(_) (2.7b)

11(_ ) + Z2(_,_,r ) 12(rl) (2.7c)

where Xl, Y1, and Z I given by equation (2.5) describe surface 1, and X2, Y2, and Z 2 given by

equation (2.6) describe surface 2. The functions 11 and 12 are blending functions, and, for the

linear case, they have the functional form of first degree Lagrange interpolating polynomials.
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As such,they connecttwo points - one on each surface having the same _, _, and r values --

and are constrained by the following expressions:

11(7 = 0) = 1

12(7 = 0) = 0

t_(7 = 1) = o

12(7 = 1) = 1

With these constraints, 11 and l2 become

11(7) = 1 - 7 (2.8a)

12(7) = 7 (2.8b)

Substitution of equation (2.8) into equation (2.7) yields the desired linear connecting curves

x(_,7,(,r) = Xl(_,(,r) (1-7) + X2(_,(,r) 7

y((,7,(,r) = YI(_,(,r) (1-7) + Y2(_,(,r) 7

z((,7,(,r ) = Zl((,(,r) (1-7) + Z2((,(,r) 7

(2.9a)

(2.9b)

(2.9c)

It is often desirable for connecting curves to intersect boundaries orthogonally so that

derivative boundary conditions can be implemented accurately. Since the curves described by

equation (2.9) are straight lines, they will not, in general, intersect boundaries orthogonally.

One way to remedy this is to use transfinite interpolation based on Hermite interpolation to

form the connecting curves. Transfinite interpolation based on Hermite interpolation allows

specification of the derivatives at the end points of the curves, enabling one to force

orthogonality at the boundary. When this method is used to generate connecting curves

between surfaces 1 and 2, the resulting cubic curves have the following functional form:
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• = hi(7) + h2(7)

Ox(_,7=O,_,r ) Ox(_,7=l,_,r) h4(7 ) (2.10a)
+ 07 h3(7) + 07

y((,7,_,r) = Yl(_,_,r) hi(7) + Y2(_,(,r) h2(7)

Oy( (,7= l,(_,r )
Oy(_,7=O,_,r) h_(7) + h4(7) (2.lOb)

+ 07 07

z((,7,_,r) = ZI((,_,r ) hi(7) + Z2((,_,r) h2(7)

Oz(E.,7=l,4,r)
Oz((,7=O,_,r) h3(7 ) + h4(7 ) (2.10c)

+ 07 07

where Xl, YI, and Z 1 given by equation (2.5) describe surface 1, and X2, Y2, and Z 2 given by

equation (2.6) describe surface 2. The functions hi, h2, h3, and h 4 are blending functions

which connect two points - one on each surface having the same (, (, and r values. They are

constrained by the following expressions:

hi( 7 : 0) = 1 hi( 7 = 1)

Oh1( 7 = O) _ 0 Oh1( 7 = 1)
07 07

=0

--0

h2(7 = O) = 0 h2( 7 = 1)

Oh2( 7 = O) _ 0 Oh2( 7 = 1)
07 07

=1

--0

h3( 7 = O) = 0 h3( 7 = 1)

Oh3( 7 = O) _ 1 Ohs( 7 = 1)
07 07

=0

--0

h (7=O) =o h4(7=1) =o

Oh4( 7 = O) _ 0 Oh4( 7 = 1)
07 07

--1

With these constraints, hi, h2, ha, and h4 become (ref. 36)

h_(7) = 273 - 372 + 1

h2(7 ) = -273 + 372

(2.11a)

(2.11b)
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ha(7) = 7 a _ 272 +

h4(¢) = 73 _ 72

(2.11c)

(2.11d)

We choose the values for Ox(_,_l--:O,¢,T) OX(_,7-:I,_,T) CgY(_'7--O'_'T) and
07 ' 07 ' 07 '

0y(_,_/----1,¢,r) so that the connecting curves given by equation (2.10) will intersect surfaces 1
07

and 2 orthogonMly. For surface 1, this will occur when the cross product of fi (a vector

normal to surface 1) and e, (the vector tangent to the connecting curve) is zero. This will be

the case when

KI 0¢ 0, (2.12a)07 - b--(J

OY(_'rl=O'_'7") = -KI(_'_'T){OXIOZI_,o_ O_ OZlOXl] (2.12b)

OZ(_,_I--:O,_,T) -/0XIOY 1 0YIOXI]
07 ---- g1(_,_,r)[ _-_ _ _ _--(1 (2.12c)

Similarly, the connecting curves will intersect surface 2 orthogonMly when

,'OY2OZ 2 OZ2OY2]
0x(_,7=l,¢,v) I£2(_,¢,r)_--_ _-_ _-_ _-_ ] (2.13a)07 ----

0y(_,7----1,_,v) /OX20Z20Z20X2'_ (2.13b)

Oz((,q=l,(,r) . ,'OX20Y 20Y20X2' _
07 = K2(_'_'T)( -_ -0_ -6--( -_ ] (2.13c)

KI(_,_,T ) and K2(_,_,T ) in equations (2.12) and (2.13) are known as the "K factors"

and are chosen by trial and error so that no overlapping of the connecting curves takes place

in the interior of the spatial domain. For our problem, the "K factors" are constants given by
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KI(_,_,r ) = K2(_,(,r ) = 0.2

bXl(_'('r) OYI(_'('r) OX2(_'('r) and cgY2(('('r) in equations (2.12)
The values of O_ ' O_ ' 0_ ' O_

and (2.13) can easily be found by analytically differentiating equations (2.5) and (2.6) or by

using finite-difference formulas. Thus, substitution of equations (2.11), (2.12), and (2.13) into

equation (2.10) yields the desired cubic connecting curves based on Hermite interpolation.

Step 6 - Discretize the Domain. Steps 1 through 5 above describe how we map the

x-y-z-t coordinate system onto the _-rl-(-r coordinate system. Having done this, we now need

to discretize the domain in the _-y-(-r coordinate system; that is, we need to replace the

continuous domain by time levels and grid points.

For our problem, we replace the time domain by equally incremented time levels; that

is_

rn= n Ar , n = 0, 1, 2,... (2.14)

where r n denotes the time at time level n, and Ar denotes the constant time-step size.

We also replace the spatial domain in the _-q-(-r coordinate system by IL x JL x KL

equally spaced grid points (fig. 2-3(b)). The locations of these grid points are given by the

ordered triples (_i,qj,(k) where

_i = (i-1) /X{ , i = 1, 2, .... IL (2.15a)

yj---- (j--l) At/ , j = 1, 2 .... , JL (2.15b)

(k = (k-l) A( , k = 1, 2, ..., KL (2.15c)

A_ -- 1 AT] -- 1 A( -- 1 (2.15d)
IL-- 1 JL- 1 KL- 1

If we substitute equation (2.15) into equation (2.10), we can obtain the locations of the

grid points in the x-y-z-t coordinate system. Figure 2-3(a) shows the system of grid points for
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our problem in the x-y-z-t coordinate system obtained by using equations (2.10) and (2.15) at

one value of v.

Step 7 Control the Distribution of Grid Points. At this point, we need to

examine the grid system shown in figure 2-3(a) and ask, "Is the distribution of grid points

satisfactory?" In order to answer this question, we need to consider the physics of the problem

for which the grid is generated. For accurate solutions, grid points should be clustered in

regions of the spatial domain where sharp gradients in the dependent variables exist. Such

clustering can be achieved by the use of stretching functions (refs. 44 and 45).

For compressible flow within the 3-D spatial domain shown in figure 2-2(a), we expect

steep gradients near the walls (surfaces 1, 2, 3, and 4). Grid points can be clustered near

surfaces 1 and 2 by replacing _/ in equation (2.10) by the following stretching function

expression:

(/_,+ 1)((fin + 1)/(fin-1)) (2T/- 1 )-/_, + 1
(2.16)

where _in is a constant greater than unity. More clustering takes place in the )7 direction near

7/=0 and 7/=1 as _, approaches unity.

In a similar manner, grid points can be clustered near surfaces 3 and 4 by replacing

in equation (2.10) by

(_ +1)((_¢ + 1 )/(_--1))(2_-1)-- _, + 1

2{1 +(_ + 1)/(_-- 1))(2_-1)}

(2.17)

where /_ is a constant greater than unity that acts in the _ direction as _ does in the T/

direction.

21



The new distribution of grid points in the x-y-z-t coordinate system after stretching is

shown in figure 2-4.

Step 8 Calculate Metric Coefficients. Once we obtain a satisfactory

distribution of grid points in the x-y-z-t coordinate system, we are ready to calculate the metric

coefficients which are needed to obtain finite-difference solutions to the partial differential

equations governing the problem. The metric coefficients appear in the governing equations

when they are transformed from the coordinate system of the spatial domain (x-y-z-t in our

example) to the boundary-fitted coordinate system of the transformed domain (_-t/-_-r). With

the coordinate transformation described by equation (2.1), the metric coefficients which appear

are r t, _t, t/t, (t, _z, _/z, _x, _y, 7/y, (y, _z, rlz, and _z. These metric coefficients can be

calculated using the following expressions (refs. 2, 3, and 8):

(2.18a)

(2.18b)

(2a8c)

(2.18d)

(2.18e)

(2.18f)

(2.18g)

(2.18h)

(2.18i)

(2.1Sj)

(2.18k)

(2.181)

(2.18m)

where J is the Jacobian given by
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The derivativeterms x_, xn, x¢, y¢, Yn, YC, ze, z,1, and z( in equation (2.18) can be evaluated

either analytically by differentiating equation (2.10) or numerically by using finite-difference

formulas. The correct way to evaluate the metric coefficients depends on how the governing

equations written in the boundary-fitted coordinate system are cast. If the governing

equations are cast in strong conservation-law form, then the metric coefficient must be

evaluated numerically and the finite-difference formulas used to evaluate them must be the

same as those used in the finite-difference method of solution. If the governing equations are

cast in weak conservation-law form, then no conditions are imposed on the method for

evaluating the metric coefficients themselves but there is a condition on how the derivatives of

metric coefficients can be evaluated. Finally, if the chMn-rule conservation-law form is used,

then no conditions are imposed on how metric coefficients and their derivatives are evaluated.

This important topic is addressed in references 51 to 54.

2.2 The Four-Boundary Method

The Four-Boundary Method for generating grid points is intended for situations where

four boundaries of a spatial domain need to be mapped correctly from the spatial domain to

the transformed domain. The Four-Boundary Method (refs. 38, 39, 40, and 51) is an

extension of the Two-Boundary Method described in the previous section, and, as such,

consists of the same eight major steps with minor variations, namely:

1. Define the nature of the coordinate transformation.

2. Select a time-stretching function.

3. Select the four boundaries of the spatial domain that must be mapped

correctly.
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4. Describe the four boundaries selected in Step 3 in parametric form.

5. Map the spatial domain to a transformed domain.

6. Discretize the domain (i.e., replace the continuous domain of the problem

with time levels and grid points).

7. Control the distribution of the grid points with stretching functions.

8. Calculate the metric coefficients needed by the FD or the FV method to

obtain solutions.

We will describe each of the eight steps of the Four-Boundary Method by generating a

grid system inside the spatial domain shown in figure 2-5(a). This spatial domain is the cross-

section of a steel bar whose temperature distribution we wish to determine. The bar has a

uniform cross-section along its length, we shall consider only the 2-D region bounded by curves

1 through 4 (fig. 2-5(a)).

Step 1 Define the Coordinate Transformation. For the 2-D, non-deforming

spatial domain shown in figure 2-5(a), we seek a coordinate transformation of the form

(x,y,t) _ (_,t/,r) (2.19a)

or, more specifically,

t= t(r) (2.19b)

x = x(_,t/) (2.19c)

y = y(_,T/) (2.19d)

Here, x, y, and t comprise the coordinate system of the spatial domain, and _, 7/, and r

comprise the boundary-fitted coordinate system of the transformed domain (figs. 2-5(a) and

2-5(b)).
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Step 2 * Select a Time-Stretching Function. A time-stretching function is not used

and t is set equal to r as shown by equation (2.2).

Step 3 - Select Four Boundaries of the Spatial Domain. Since the spatial

domain of figure 2-5(a) has only four boundaries, all four boundaries are selected. We choose

curves 1, 2, 3, and 4 to correspond to coordinate lines _/=0, t/=l, _=0, and _=1, respectively

(fig. 2-5); that is,

x, = _(_, ,=0) = x_(¢) (2.20a)

YI = y(G 7/=0) = YI(_) (2.20b)

X2 = x(G T/=I) = X2(_) (2.20c)

Y2 = Y(_, 7/--1) = Y2(_) (2.20d)

X3 = x(_=0, 7/) = X3(t/) (2.20e)

Y3 = y(_=0, T/)= Y3(Y) (2.20f)

X4 = x(_=l, t/) = X4(r/) (2.20g)

Y4 = y(_=l, _/) = Y4(r/) (2.20h)

Here, X I and Y1 are the x- and y-coordinates of curve 1;

coordinates of curve 2; X 3 and Y3 are the x- and y-coordinates of curve 3;

are the x- and y-coordinates of curve 4.

Step 4 - Describe the Four Boundaries Selected in Parametric Form.

X 2 and Y2 are the x- and y-

and X 4 and Y4

Having selected

four boundaries, we now need to represent these boundaries in parametric form as suggested

by equation (2.20). For this problem, information about the four boundary curves is given in

the form of a set of discrete points which lie along the curves. Thus, interpolation techniques

must be used to generate the parametric equations of the boundary curves. In GRID2D/3D,

either spline or tension spline interpolation can be used. Here, tension spline described in

Section 3.0 is used to obtain parametric equations for the four curves in terms of the

parameter _ for curves 1 and 2 and in terms of 77 for curves 3 and 4. Figure 2-6 shows the

curve approximations thus generated.
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Step 5 - Map the Spatial Domain. The Four-Boundary Method maps the spatial

domain to the transformed domain in two steps. The first step is essentially the same as Step

5 of the Two-Boundary Method in which we select two of the four boundaries which do not

touch each other and which have been described parametrically using the same parameter

(either _ or r/). As in Step 5 of the Two-Boundary Method, curves that connect these two

boundaries are specified by using Hermite transfinite interpolation. When this step is

completed, the two boundaries that were selected will be mapped correctly, but the other two

boundaries will in general be mapped incorrectly. To remedy this, a second step is performed

where the mapping constructed during the first step is modified so that the other two

boundaries will also be mapped correctly.

In our example, we will first define curves that connect curves 1 and 2 such that only

curves 1 and 2 will be mapped correctly. Afterwards, we will modify the connecting curves so

that curves 3 and 4 will also be mapped correctly.

Curves which connect curves 1 and 2 are described by the following Hermite

interpolation expressions:

x_(_,r/) = Xl(_) hl(r/) + X2(_ ) h2(r/)

0x(_,r/=l)+ + h4(r/)
0,1 0,1

(2.21a)

Y'(_,r/) ---- YI(_) hi(r/) + Y2(_) h2(r/)

oy( ,r/=o ) ou( ,r/= l ) h4(r/)
+ Or/ h3(r/) + (977

(2.21b)

Here, hi, h2, h3, and h4 are given by equation (2.11). The values of the partial derivatives in

equation (2.21) will be given shortly.
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By using equation (2.21), we map curves 1 and 2 in the x-y-t coordinate system to

coordinate lines 7/=0 and 7/=1 in the _-r/-v coordinate system (fig. 2-7). Note, however, that

curves 3 and 4 have not been mapped to coordinate lines _=0 and _=1. Instead, connecting

curves 3' and 4' have been generated in the spatial domain, and it is these curves which have

been mapped to _=0 and _=1 in the transformed domain. In order to map curves 3 and 4 in

the x-y-t coordinate system to coordinate lines _=0 and _=1 in the _-r/-r coordinate system,

we must adjust curves 3' and 4' so that they coincide with curves 3 and 4. With this in mind,

we define two quantities - Ax and Ay - such that

z(¢,¢) = _(_,¢) + A_(_,n) (2.22a)

(2.22b)

will map curves 3 and 4 to _=0 and _--1, respectively. Here, x' and y' are given by equation

(2.21).

Ax and Ay are given by the following Hermite interpolation expressions:

Ax(_,t/) = [x(_=0,T/) - x'(_=0,_/)] h5(_)

+ [x(_-=l,_?) -- xe(_----1,T/)] h6(_ )

+ [0_(_0,_) 0_(_=0,_)_-_ , hT(_)

+ [0x(_0_l,_/) _ 0x'(_=l,_/)]0_hs(_) (2.23a)

A_(_,,) = [y(_=0,_) - y'(_=0,_)] hs(_)

+ [y(_=l,t/) - y,(_=l,t/)] h6(_)
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where

az(_=o,rl=o) Ox(_=O,rl=l)
0x'(_=0,y) = hl(_l) + h2(Y )

o_ o_ o_

. , ,02x(_=0,_=0) 02x(_=O,rl=l) (2.23c)
+ n3[_?) _ + h4(r/) c9_c%1

0x'(_----1,,) _ hi(r/) 0x(_=lj/=0)
Ox(_= 1,_--1)

. , ,02x(_ = 1,rt =0) 02x(_ = 1,rt---- 1)
+ n3t'7_ _ + h4(_) 00,1

0y'(_=0,.) _ hi(.) 0u(_=0,.=0)
0_ 0_

Oy(_=O,r/= 1)
+ h2(q) 06,

(2.23d)

. , ,02 y(_ = 0,_! = O) 02 y(_ = 0j/= 1) (2.23e)
.-b n3(rl ) _ + h4(rl) 0_0_

0y'(_=l,Y)0_ -- hi(q) 0y(_=l,y=0)0_ + h2(y ) 0y(_--1,q=l)_9__

h " `02 y(_ = 1,r I= O) 02 y(_ = 1,7/---- 1) (2.23f)
+ 3(_1) _ + h4(rl) 0_0_1

hs(_) ---- 2_ 3 - 3C + 1 (2.24a)

h6(_ ) : _2_ 3 + 3_ 2 (2.24b)

hT(_ ) = _3 _ 2C + _ (2.24c)

hs(_ ) = _3 _ _2 (2.24d)

If we substitute equations (2.23) and (2.24) into equation (2.22), then we obtain the

desired expressions for x(_,r/) and y(_,_/) which describe the mapping between the spatial

domain and the transformed domain.

We still need to specify the derivative terms in equations (2.23) and (2.24). Similar to

the Two-Boundary Method, the first-order derivative terms are chosen so that the connecting

curves will intersect the boundaries orthogonally. This time, however, the spatial domain is
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two dimensional so that we must use the dot product instead of the cross product to specify

orthogonality at a boundary. Connecting curves will intersect curve 1 orthogonally when the

dot product of _¢ (a vector tangent to curve 1) and _ (the vector tangent to the connecting

curve) is zero. It can be shown that this will be the case when

OT/ 0_/

Following this line of reasoning, the expressions for the first-order derivative terms in

equations (2.23) and (2.24) are given below:

0_(_,_=o) _ _K_(_)OYo__(_) 0u(_,¢=0) .0X,(_)0" ' o_ - K_(_) _ (2.26a)

Ox(_,_I=I)__K2(_)OY02._(_ ) c9y(_,_1=1)_ K2(_)OX02_2(_) (2.26b)&l ' 071

0_(_=0,,) _ rG(_)ovs(,)_ @(_=0,_) _ _,_,)°x3(')-_ (2.26c)

Ox(_=l,_?) .... aY4(rl) Oy(_=l,_) " " "OX4(Y) (2.26d)

For our example , KI(_ ) and K2(_ ) were chosen to be equal to 0.3, while K3(rl) and K4(rl ) were

chosen to be equal to 0.1.

Methods for determining the second-order derivative terms present in equation (2.24)

are given in reference 40. In our example, these terms are all set equal to zero.

Step 6 Discretize the Domain. We discretize the domain in the _-r/-v coordinate

system by replacing the temporal domain with equally incremented time levels and by

replacing the spatial domain with IL x JL equally spaced grid points (fig. 2-8(b)).
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The time levels are described by equation (2.14). The grid points are located at (_i,_/j)

where

_i= (i--1) A( , i=1, 2, ..., IL

rlj= (j--l) Ar l, j=l, 2, ..., JL

A( 1 A_ jLI--1-- IL--1

(2.27a)

(2.275)

(2.27e)

If we substitute equations (2.23), (2.24), (2.26), and (2.27) into equation (2.22), then

we can obtain the locations of the grid points in the x-y-t coordinate system. Figure 2-8(a)

shows the system of grid points for our problem in the x-y-t coordinate system obtained by

using equation (2.22).

Step 7 - Control the Distribution of Grid Points. In this example, we choose not

to use stretching functions to redistribute the grid points within the spatial domain. If

redistribution is desired, then the procedure described in the previous example can be followed.

Step 8 - Calculate Metric Coefficients. For our 2-D, non-deforming spatial domain,

the metric coefficients which need to be evaluated are rt, _, qx, (y, and yy. These metric

coefficients can be evaluated by using the following equations:

r_ ---- 1 (2.28a)

_x = Yn / J (2.285)

tlx = -- y_ / J (2.28c)

_y = -x n/ J (2.28d)

fly ---- x_/J (2.28e)

where J is again the Jacobian but this time is given by

J = x_y,7 - x,Tye (2.28f)
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As before, the partial derivative terms in equation (2.28) can be evaluated either

analytically or numerically by using finite-difference formulas depending upon how the

governing equations written in the boundary-fitted coordinate system are cast.

2.3 The Six-Boundary Method

The Six-Boundary Method for generating grid points is intended for 3-D spatial

domains in which six boundaries of the spatial domain need to be mapped correctly from the

spatial domain to the transformed domain. The Six-Boundary Method (refs. 39, 40, and 51) is

an extension of the Two-Boundary Method and the Four-Boundary Method described in the

previous two sections, and, as such, consists of the same eight major steps with minor

variations, namely:

1. Define the nature of the coordinate transformation.

2. Select a time-stretching function.

3. Select the six boundaries of the spatial domain that must be mapped

correctly.

4. Describe the six boundaries selected in Step 3 in parametric form.

5. Map the spatial domain to a transformed domain.

6. Discretize the domain (i.e., replace the continuous domain of the problem

with time levels and grid points).

7. Control the distribution of the grid points with stretching functions.

8. Calculate the metric coefficients needed by the FD or the FV method to

obtain solutions.
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We shall describe each of the eight steps of the Six-Boundary Method by generating a

grid system within the deforming, spatial domain shown in figure 2-9(a).

Step 1 Define the Coordinate Transformation. For the 3-D, deforming spatial

domain shown in figure 2-9(a), we seek a coordinate transformation of the form

(x,_,z,0 _ (_,_,(,r) (2-29a)

or, more specifically,

t= t(r) (2-29b)

x---- z(_,O,(,r ) (2.29c)

y = y(_,rl,(,r) (2.29d)

z--- z(_,r/,(,r) (2.29e)

Here, x, y, z, and t comprise the coordinate system of the spatial domain, and _, r/, (, and r

make up the boundary-fitted coordinate system of the transformed domain (figs. 2-9(a) and 2-

9(b)).

Step 2 - Select a Time-Stretching Function. A time-stretching function is not used

and t is set equal to r as shown by equation (2.2).

Step 3 - Select Six Boundaries of the Spatial Domain. Since the spatial domain

of figure 2-9(a) has only six boundaries, all six boundaries are selected. We choose surfaces 1,

2, 3, 4, 5, and 6 to correspond to coordinate planes _/=0, r/=l, _=0, _=1, (= O, and ( = 1,

respectively (fig. 2-9); that is,

xl = _(_, _=0,¢, _) = x1(_,¢,r)

Y_ = u(_, _=0,¢,_) = Y_(_,¢,_)

x2 = _(_, _=1,(,_) = x2(_,_,_)

Y2 ----Y(_, r/----1,(,v) ----V2(_,(,v)

(2.30a)

(2.30b)

(2.30c)

(2.30d)
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xs = _(_=0, _,_,_) = xa(_,_,r) (u.aOe)

Y3 = y({=O, r/,(,r) = Ya(rl,(,r) (2.300

X4 = x(_=l, _,(,r) = X4(o,(,r ) (2.30g)

Y4 = y(£=l, r/,(,r) = Y4(q,(,r) (2.30h)

X 5 = x(_, _,¢ = O,r) = Xa(_,_,r ) (2.30i)

Y5 = Y({, _,ff = O,r) = Ys({,q,r) (2.30j)

X 6 = x({, _,( = 1,r) = Xe({,r/,r ) (2.30k)

Y6 = Y(_, _,_ = 1,r) = Ya(_,r/,r) (2.301)

Here, X I and Y1 are the x- and y-coordinates of surface 1; X 2 and Y2 are the x- and y-

coordinates of surface 2; X 3 and Y3 are the x- and y-coordinates of surface 3; X 4 and Y4 are

the x- and y-coordinates of surface 4; X 5 and Y5 are the x- and y-coordinates of surface 5; X 6

and Y6 are the x- and y-coordinates of surface 6.

Step 4 - Describe the Four Boundaries Selected in Parametric Form. Having selected

six boundaries, we now represent these boundaries in parametric form. For this problem,

information about the six boundary surfaces is given in the form of a set of discrete points

which lie along the surfaces. Thus, interpolation techniques must be used to generate the

parametric equations of the boundary surfaces. In GRID2D/3D, a new technique referred to

as 3-D bidirectional Hermite Interpolation can be used (Section 3.0i.

Step 5 - Map the Spatial Domain. We map the spatial domain to a transformed

domain in three steps. In the first step, correctly map two of the six boundaries by using the

Two-Boundary Method. In the second step, correct the mapping completed in the first step

by ensuring two more boundaries are mapped correctly (same as Step 5 of the Four-Boundary

Method). Finally, in the third step, correct the mapping completed in the second step by

ensuring the remaining two boundaries are mapped correctly.

Surfaces i and 2 will be mapped correctly by the following Hermite interpolation

expressions:
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+ o_( f ,r/=o,i ,r )
or� h3(r/) ..t-

0x(f,r/=l,_,r) h4(rl)
Or/

(2.31a)

y'(f,r/,(,r) -- Yl(f,¢,r) hi(r/) + Y2(f,¢,r) h2(r/)

+
ou(f,r/=o,i,_)

or/ hs@) +
0y(f,r/=l,(,r)

Or/ h4@) (2.31b)

Here, hi, h2, h3, and h4 are given by equation (2.11).

Surfaces 1, 2, 3, and 4 will be mapped correctly by the following equations:

_'(f,_,¢,r) = e(f,_,;,_) + zx_(f,_,¢,_)

y,,(f,_,;,_) = ¢(f,_,¢,r) + zxy'(f,0,¢,_)

(2.32a)

(2.32b)

where x' and y' are given by equation (2-31) and

zx_(f,r/,i,r) = [x3(r/,i,¢) - _(f=o,r/,;,¢)] hs(f)

+ [X4(r/,_,_) - _(f=l,r/,_,r)] he(f)

+ [O_(f_0__.,,¢,r)-n., _ O_'(f=O,r/,¢,_')__j hz(f)

+ [O_(f----ol_r/,¢,_) _ O#(_=l,r/,¢,_)]Ofhs(f) (2.33a)

zx¢Cf,r/,¢,T) = [¥3(r/,¢,T) - ¢(f=o,r/,¢,_-)] hs(_)

+ [Y4(r/,_,r) -- y'(f=l,r/,¢,r)] ha(f)

+ [Oy(f%__rl,(_,7 ) _ Oy'(f%._.%{_,r/,(_,r)] hz(f )

+ [ou(f--o_r/,_,,-) _ ou'(f=l,r/,_,,-)lof he(f) (2.33b)

In the above equations, h 5, h 6, h z, and h8 are given by equation (2.24).
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All six surfaces of the spatial domain shown in figure 2-9(a) -- namely, surfaces 1, 2, 3,

4, 5, and 6 - will be mapped correctly by the following equations:

x((,O,(,r) = x"((,,7,(,r) + Ax"((,O,(,r)

y(_,O,¢,r) = U"({,,,(,r) + Ay"({,O,(,_)

where xa' and y" are given by equation (2-32) and

(2.34a)

(2.34b)

/kx"(_,r/,(,r) : [X5(_,_,7" ) - x"(_,r/,(----O,r)] h9(_)

+ [Xe(_,q,r ) -- x"(_,y,(=l,r)] h lo(_ )

+ [o4_,_=o,r) _ o_,(_,_,(=o,_)._ 1h11(_)

+ [0x(_,___=l,r) _ 0x"(_,_,(=l,r)]0(h12(_') (2.35a)

Ay'((,y,(,r) : [Y3(y,(,r) -- y'((=O,_,(,r)] hs(( )

-1- [Y4(r/,(,r) -- y'(_=l,r/,(,r)] he(E)

+ - hT(e)

+ [Oy((%__,?,(,r) _ Oy'((=l,y,(,r)]O(hs(()

h9(() ----2( 3 - 3( 2 + 1

hlo(( ) = -2( 3 + 3I 2

h11(( ) = 13 -- 2I 2 + (

h12(() = (_ _ (2

(2.35b)

(2.36a)

(2.365)

(2.36c)

(2.36d)

If we substitute equations (2.31) to (2.33) into equation (2.34), then we obtain the

desired expressions for x(_,r/,(,v) and y(_,r/,(,r) which describe the mapping between the

spatial domain and the transformed domain.
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We still needto specify the derivative terms in equations (2.31), (2.33), and (2.35).

Similar to the Two- and Four-Boundary Methods, the first-order derivative terms are chosen

so that the connecting curves will intersect the boundaries orthogonally. Methods for

determining the second-order derivative terms are given in reference 40. In our example, these

terms are all set equal to zero.

Step 6 - Discretize the Domain. We discretize the domain in the _-r/-_-v coordinate

system by replacing the temporal domain with equally incremented time levels and by

replacing the spatial domain with IL x JL x KL equally spaced grid points.

The time levels are described by equation (2.14). The grid points are located at

(_i,_Tj,_k) where _i, 7/j, _k are given by equation (2.15).

If we substitute equation (2.14) and (2.15) into equation (2.34), we can obtain the

locations of the grid points in the x-y-t coordinate system.

Step 7 - Control the Distribution of Grid Points. In this example, we choose not

to use stretching functions to redistribute the grid points within the spatial domain. If

redistribution is desired, then the procedure described in the example in Section 2.1 can be

followed.

Step 8 - Calculate Metric Coefficients. For our 3-D, deforming spatial domain, the

metric coefficients which need to be evaluated are given by equation (2.18).

2.4 Additional Remarks

We conclude this section by mentioning three problems which must be dealt with when

using the Two-, Four, and Six-Boundary Methods.

First, slope discontinuities present in the boundaries of spatial domains will propagate

into the interior of the grid systems generated by using these methods. These discontinuities
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in the slopes of the grid lines are undesirable since they can lead to errors in the solution. To

correct for this, some technique should be used to smooth the grid. One way to smooth a grid

system with slope discontinuity is to apply a Laplacian operator to the region near the

discontinuity. This method is described in Section 4.0.

Second, care must be taken when choosing the "K factors" and the stretching functions

for the Two-, Four-, and Six-Boundary Methods. Large "K factors" tend to produce grid lines

with more curvature. Such grid lines often overlap in the spatial domain or, at least, can form

a grid system which is very skewed. In general, numerical values in the "K factors" and the

stretching functions are arrived at in an iterative manner. First, a grid is generated by using

one set of inputs for the "K factors" and the stretching functions. Next, that grid is plotted

(GPdD2D/3D contains a graphics program to plot grid systems that it generates) and

inspected visually. Based on that inspection, the inputs are modified accordingly. This process

repeats until a satisfactory grid has been obtained. Since GRID2D/3D is highly efficient, an

acceptable grid system can be generated within a short time.

Last, when connecting curves are discretized to form grid points, the orthogonaiity

which was forced at the bour_daries may be lost. Figure 2-10 illustrates this point. Between

grid points a and b, curve c is approximated by line segment a-b. The original 90 ° angle, c_,

between boundary d and curve c has been replaced by angle /_ between boundary d and line

segment a-b. In order that _ more nearly approximate a, two things can be done. First,

stretching functions can be used to move point a closer to point b. Second, larger "K factors"

can be utilized to force the effect of orthogonality further into the domain along curve c. In

this way, orthogonaiity between the grid lines and the boundary curves can be maintained

after the discretization of the spatial domain.

37



3.0 METHODS FOR GENERATING PARAMETRIC

REPRESENTATION OF BOUNDARIES

In Section 2.0, It was shown that in order to use the Two-, Four-, and Six-Boundary

Methods, it is necessary to represent the boundaries of the spatial domain in parametric form.

These boundaries are curves for two-dimensional spatial domains and surfaces for three-

dimensional ones. In this section, methods for representing curves and surfaces in parametric

form are described.

3.1 Parametric Representation of Curves and Surfaces

Curves and surfaces can be described mathematically in several different ways. For

example, a curve in the xy-plane can be represented by

or

y : f(x) (3.1)

f(x,y) ---- 0 (3.2)

Alternatively, we can describe the same curve by

x = g(s) y----f[g(s)]---- h(s) (3.3)

Equation (3.3) is a parametric representation of the curve in terms of a parameter, s. The

choice of s is rather arbitrary, the only restriction being that s must increase monotonically

along the curve. Here, we note that all curves and surfaces can be represented by parametric

equations and that there is no one unique way of representing a curve or surface in parametric

form.
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In grid generation, information about a curve or surface is given either by an analytical

expression such as equation (3.1) or by a set of coordinates which describe the locations of a

finite number of discrete points on the curve or surface. When information about a curve or

surface is provided in the form of an analytical expression (such as eq. (3.1)), it is a

straightforward matter to generate a set of parametric equations (such as eq. (3.3)) for the

curve or surface. When information about a curve or surface is given by a finite number of

discrete points, then some type of interpolation schemes must first be used to approximate the

curve or surface by an analytical expression before it can be represented in parametric form.

The following subsections present methods to obtain parametric equations for curves and

surfaces given as sets of discrete points.

3.2 Approximation of Curves in Two and Three Dimensions

For 2-D spatial domains, Lagrange interpolation is usually unsatisfactory for

representing curves because it produces curves which may oscillate wildly when the number of

discrete points (henceforth referred to as nodal points) is large (e.g., ref. 55). Hermite

interpolation is usually impractical as well, since it requires information about derivative values

at the nodal points which is seldom available (e.g., ref. 56). Least-squares regression is not

computationally efficient for large sets of nodal points and yields curves which do not, in

general, pass through each nodal point (e.g., ref. 57). Spline interpolation, on the other hand,

yields curves that do pass through each nodal point and are well behaved (i.e., they do not

oscillate wildly). Spline interpolation uses a different function (typically a low-degree

polynomial) between successive nodal points (fig. 3-1). The resulting piecewise curve is made

smooth by enforcing continuity of as many derivatives as possible at the nodal points. This

technique can easily be used to approximate curves which are functions of two or three spatial

coordinates. Because of the aforementioned attractive features of spline interpolation, this
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method will be used here to approximate curves in both two and three dimensions. We now

consider two types of splines - cubic splines and tension splines.

3.2.1 Cubic Spline Interpolation. - The objective in cubic spline interpolation is to

derive a different third-degree polynomial for each interval between successive nodal points,

subject to the condition that the polynomials be connected piecewise to form a smooth curve

that is continuous up to the second-order derivative. Since we require the curve to be written

in parametric form, the equation describing this curve in an arbitrary interval, i, can be

written as (fig. 3-1)

Xi(s ) = Ai s3 + Bi s2 + Cis + D i (3.4)

Here, X represents any spatial coordinate (e.g., x, y, or z in the Cartesian system), and s is a

parameter which was mentioned previously and which will be discussed in more depth later in

this subsection. Ai, Bi, Ci, and D i are coefficients which vary from interval to interval. For

n+l nodal points, there are n intervals and 4n such coefficients; thus, 4n conditions are

required in order to evaluate these coefficients. These conditions are summarized below:

curve must pass through the nodal points. This gives 2n1. The spline

conditions.

2. The first- and second-order derivatives of the spline curve must be

continuous at all interior nodal points (i.e., nodal points 1 through n-l; fig. 3-1).

This gives 2n-2 conditions.

3. Two conditions control the behavior of the spline curve at the

nodal points. These conditions will be discussed later in this subsection.

two end

We could use these 4n conditions together with equation (3.4) to obtain 4n

simultaneous equations in 4n unknowns. However, a shortcut is possible which requires the

40



solutionof only n--1 simultaneous equations (e.g., refs. 55-59). Since the shortcut method is

much more efficient, it is used in GRID2D/3D.

We begin the shortcut method by noting that since the curve for each interval is a

cubic, the second-order derivative within each interval is a straight line. Thus, we can write

x;"(_) = x"(_ _),(_-_), + x"(_)__ (3.5)
- (Si_l--Si) (si--si_ 11

where Xi'(s ) is the value of the second-order derivative of X at any location s within the i_h

interval (fig. 3-1). The parameter s takes on the values si_ 1 and s i at the beginning and end of

the interval, respectively.

By integrating equation (3.5) twice with respect to s, we obtain an expression for Xi(s )

which contains two constants of integration. We solve for these constants by imposing the

conditions that Xi(s ) must equal X(si.1) at si_ 1 and Xi(s ) must equal X(si) at s i. This yields

x"(si_ 1)
x_(_) = 6(s___i__)(_i-_)_ +

+ \(si- "ii)

('
+ \(_- _i-i)

Xit[ S

X"(si)(s-_i--si-1)_($--si 1)

6 ] -
(3.6)

The only unknowns in the above equation are the second-order derivatives at the beginning

and end of the interval - X'(si_l) and X'(si). Values of these second-order derivative terms

can be found by invoking the condition that the first derivatives at the nodal points must be

continuous:

X__1(si) = Xit(si) (3.7)
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Equation (3.6) can be differentiated to give an expression for Xi'(s ). If we do this for

both the (i--1) th and the z_h intervals and set the two results equal to each other according to

equation (3.7), we obtain the following result:

($i-ai_l)Xtt(si.1) -4- 2(8i.t.1-$i_1)XH(8i) -t- ($i_l.l--Si)Xtt($i.l_l)

-- (8i_t_6_si)[X(ai_l_l)--X(8i)] (8i._6-8i_1)[X(ai)--X($i-1) ]
(3.8)

If equation (3.8) is applied at all interior nodal points, then we obtain n-1

simultaneous equations in n+l unknown second-order derivative terms. This system of

simultaneous equations has a tridiagonal coefficient matrix and requires two more conditions

before it can be solved. Here is where our two additional conditions regarding the end nodal

points are necessary. There are several conditions which can be imposed at the end nodal

points. We mention only the following two:

1. Cyclic End Conditions. If the curve being approximated is cyclic (i.e., the

two end nodal points represent the same point in space as in a closed curve), then it

is appropriate to write

x'(,o) = x.(,.) and X"(,o) = X"(s.) (3.9)

With this assumption, the coefficient matrix of the system of equations mentioned

previously is now cyclic tridiagonal, and the system becomes n+l equations in n+l

unknowns. An example of a cubic spline with cyclic end conditions is shown in

figure 3-2(a).

2. Natural End Conditions. If we allow the second-order derivative of the spline

curve to be zero at the two end nodal points, then we minimize the total curvature

of the spline curve. This is the so-called natural spline, and the end conditions are

given by
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X"(So) = X"(sn) = 0 (3.10)

In this case, the system of equations mentioned previously reduces to n-1 equations

in n-1 unknowns. An example of a cubic spline with natural end conditions is

shown in figure 3-2(b).

In either case, the system of equations in X"(si) can be solved efficiently using simple

computational algorithms (e.g., refs. 55 to 59). Once the X"(si)'s are known, values for X at

any location s along the curve can be found using equation (3.6). Recall that X in equation

(3.6) represents any spatial coordinate - x, y or z (comments under equation (3.4)). Thus,

the required parametric equation is given by x = X(s), y = Y(s) for plane curves and x =

X(s), y = Y(s), z = Z(s) for twisted curves and surfaces.

We now return to the question of how to choose the parameter, s. One simple and

effective way is to let s represent arc length along the curve. Of course, we do not know the

actual arc length a priori, but an adequate estimate can be obtained by summing linear

distances between nodal points. Thus, for a two-dimensional curve in the xy-plane (i.e., a curve

which is a function of only two spatial coordinates -- say x and y), we have s o = O, s I = s o

+ _[(X2--XI) 2"}-(Y2- Y1)2], 82 : 81 "b _[(X3--X2) 2+(Ys- Y2)2], and so on.

3.2.2 Tension Spline Interpolation. - Cubic spline interpolation produces curves that

are well behaved in most CaSeS; however, in cases where the curve to be approximated

possesses extreme curvature, curves generated using cubic spline interpolation often have

unwanted wiggles. This phenomenon is illustrated in figure 3-3. One solution to this problem

is to put the spline in tension. One might visualize this as pulling on the ends of the cubic

spline to "straighten out" any unwanted wiggles. We add tension to the cubic spline by

replacing equation (3.5) by
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xi,,(s ) _,ex,(_ ) ,, e (_i-_)
-- _- [X ($i_1)--o" X(si.1)](si_$i_l)

+ -s'-1),
tsi--si_ D

(3.11)

where a is the tension parameter, the range of which is given by 0 < _ < c¢. The spline curve

created by adding tension to the cubic spline is known as a tension spline (ref. 56). The

tension spline tends toward a linear spline as _ is increased and approaches a cubic spline for

values of tr near zero.

As with the cubic spline, we integrate equation (3.11) twice with respect to s and

require that the curve pass through the proper nodal points to give

xi(_) =
X"(si_1) sinhIa(si-s)]

tr2 sinh[a(si--Si_l) ] + [X(si_1)

X"(si) sirth[tr(s- si_l)]
+ {r2 sinh[_(si-si_l)] + [X(si)

X"(s__.i_z) 1 (si--s)

_2 , (si_si.1)

x,,(,_) l (s-,__,) (3.12)
02 ($i-si-1)

Upon demanding continuity of the first derivative at the interior nodal points, we have

1(_i-si-1)

;{rcosh[tr(s i-si_l)]

{rcosh[o'(si+ 1 -- si)]

+ sinh[a(si+l_si)]

_r "[X"(si-;)

sinh[cr(si-si_1)lJ 7

1

(si-si_ 1)

1 _X"(si)

7

_ _X"(Si+l)+ (si+f_si) sinh[a(Zi+1-si)lJ aT

{X(si-t-1)--X(si) X(si)--X(si.1) _ (3.13)

Applying equation (3.13) at all interior nodal points again results in a system of n-1

equations in n+l unknowns with a tridiagonal coefficient matrix. Two conditions are required

at the end nodal points to make solution of the system possible. The cyclic and natural end
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conditions presented for the cubic spline can be used for the tension spline as well with X"(si)

replaced by X,'(si) -- a2X(si). In either case, the resulting system of simultaneous linear

equations can be solved by using simple numerical algorithms.

Since tension splines involve hyperbolic functions, they are computationally less

efficient than cubic splines; however, excellent results can be obtained for cases where cubic

splines prove unsatisfactory. Figure 3-4 shows that a tension spline with _r=10 exhibits none

of the wiggles visually present in the cubic spline of figure 3-3. The same set of nodal points

was used to generate the spline curves shown in figures 3-3 and 3-4.

3.3 Approximation of Surfaces in Three Dimensions

For three-dimensional spatial domains, the boundaries of the domain are surfaces. As

one might expect, methods for describing surfaces based on interpolating between specified

nodal points which lie on the surface are more complex than their two-dimensional

counterparts. Part of the additional difficulty lies in the fact that there are several ways in

which information about discrete points on a surface may be given. With curves, it is

sufficient to start at one end of the curve and specify nodal points at random intervals as one

moves along the length of the curve. This is not the case for surfaces. One cannot just

randomly pick points on a surface and expect to efficiently construct an approximation of the

surface using an interpolation method unless the points are chosen in an organized manner.

Here, we consider the following two structured methods for specifying points on a surface:

Case 1. Only points which lie along the edges of the surface are given. These edges

exist as twisted (3-D) or plane (2-D) curves. This case is applicable to surfaces whose

interior regions are similar to their edge contours. Examples of such surfaces are

shown in figure 3-5.
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Case 2. Points on the surface are given on a grid as shown in figure 3-6. In figure 3-6,

the z-coordinates of surface H are given on a rectangular grid in the Cartesian system.

This case is applicable to any surface but is especially well-suited to surfaces whose

interior regions differ greatly from their edge contours. Examples of such surfaces are

shown in figure 3-7.

In the next three subsections, we present three methods for approximating boundary

surfaces by interpolating between points which lie on the surfaces. Section 3.3.1 describes a

method, referred to as transfinite interpolation with bilinear blending (also known as linear

Coon's interpolation), which can be used when the nodal points are given in the format of

Case 1 above. Section 3.3.2 presents a new method, referred to as three-dimensional

bidirectional Hermite interpolation, which can also be used when the nodal points are given in

the format of Case 1. Section 3.3.3 presents a method, referred to as parametric bihyperbolic

spline interpolation, which can be used when the nodal points are given in the format of Case 2

above.

3.3.1 Transfinite Interpolation With Bilinear Blending - To illustrate how transfinite

interpolation with bilinear blending approximates surfaces, consider the boundary surface

shown in figure 3-8. That boundary surface is bounded by four twisted curves. Information

about the four twisted curves may be given in analytical form, or they may be put into

analytical form from coordinates of the nodal points located on the curves by using either

cubic spline or tension spline interpolation described in Section 3.2. In either case, we end up

with parametric equations describing each of the curves in the following form:

Xl-_.Xl(Sl) X2--_X2(82) X3.-_X3(83) X4-_X4(84)

rl = rl(Sl) ]I2 = r2(s2) Y3-_ r3(s3) ]I4 = Y4($4)

z2=z2( 2) z =z3( 3) z4=z4( 4)
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Here,Xi, Yi, and Z i describe curve / where / = 1, 2, 3, 4, and s i represents the approximate

arc length along curve / as discussed in Section 3.3.1.

Recall that for the Two-, Four- and Six-Boundary Methods, boundary surfaces in the

spatial domain are mapped onto coordinate planes in the transformed domain. Here, we map

the boundary surface shown in figure 3-8 onto the coordinate plane shown in figure 3-9 located

at ( -- 0 in the transformed domain. Accordingly, we relate Sl, s2, s3, and s 4 to _ and 7 as

follows:

_ = _(_,_=o,_=o) = _(_)

82 = S2(_,_.-_l,_-_--O) = 82(_)

_3 = _(_=0,_, C=O) = _(_)

_4 = s4(_=1,7,_=0) = s4(7)

(3.14a)

(3.145)

(3.14c)

(3.14d)

By using equation (3.14) above, we linearly interpolate between curves 1 and 2 to

obtain the following equations:

• _2(_,7,¢=o) = (1-7) x_(_) + 7x2(_ )

Y12(_'7'_ :'--'0) = (1-7) YI(_) + 7 Y2(_)

z12(_,7,(=0) = (1-7) ZI(_) + 7 Z2(_)

(3.15a)

(3.15b)

(3.15c)

The surface described by the above equations is known as a lofted surface between curves 1

and 2 and is shown in figure 3-10(a).

In a similar manner, we linearly interpolate between curves 3 and 4 to form a lofted

surface described by

x34(_,7,_=0) -= (1-_)X3(7) + _ X4(7)

Y34(_,7,(=0) ---- (1-_) Y3(7) + _ Y4(7)

z34(_,7,_=0 ) ---- (1-_) Z3(7) + _ Z4(7)

(3.16a)

(3.16b)

(3.16c)

This surface is shown in figure 3-10(b).
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If we add these two surfaces, we obtain a surface which does not pass through the four

corners determined by the intersections of the four twisted curves. In order to correct for this,

we define a third surface by

• _2s4(_.,i._=o) = (i-_)(I-_) x_(_=o) + _ (I-,) x_(_=:t)

+ (1--_).X2(_=O)+ _ q X2(_-'I) (3.17a)

u,:s4(e,.,i=o)= (I-_)(i-0)Y,(_=o)+ _ (I-o) Y_(_=1)

+ (1-_). Y2(_=o)+ _ _?Y2(_=1) (3.17b)

z1234(fPT,(=O)= (l--f)(1--W)ZI(_=O)+ f (I.-w)ZI(_=I)

+ (1--_).ZA_=O) + _ '7ZA_=I) (3.17c)

This surface interpolates the four corners of the region and is simply the plane section shown

in figure 3-10(c).

By adding equations (3.15) and (3.16) and subtracting equation (3.il7) from the result,

we obtain the following expressions which describe the surface bounded by curves 1 through 4

(fig. 3-10(d)):

x(_,y,(--O) : (l--y) Xl(_) + 7]X2(_ ) + (1--_) X3(q) + _ X4(q)

- [(1-_)(1-q) X1(_--O ) + _ (I-.) X_(_--I)

+ (i-_) . X2(_--O ) + _ . X2(_=l)] (3.18a)

y(_c,q,_'=O) = (i--r/) YI(_ ¢) + r/ Y2(_) + (1--_) Y3(r/) + _ Y4(tl)

-- [(1--_)(1--,I)YI(_=O) + _ (I--y) YI(_--I)

+ (1--,_) rt Y2(_:=O) + _ rl Y2(,_=l)] (3.18b)

z(_,y,C=O) = (i--.) Z_(() + tlZ2(_) + (1--_) Zs(q) + _ 24(. )

- [(1-_)(l-rt) Z_(_¢=O) + _ (1-rt) Z_(_=I)

+ (1--_). Zz(_=O) + _ ,IZ_(_=I)] (3.18c)
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Approximating a surface,by linear interpolation between curves that bound it, is

known as transfinite bilinear interpolation. This method was named by Gordon and Hall (ref.

34), but was first demonstrated by Coons (ref. 33). Thus, this method is also referred to as

linear Coon's interpolation.

For some surfaces, transfinite bilinear interpolation does not produce a satisfactory

approximation. This usually occurs when the curves that bound the surface possess extreme

curvatures. In such cases, higher degree blending functions (e.g., cubic Hermite blending

functions) can be employed and this is the subject of the next section. Also, if additional

information about contour lines on the interior of the surface is available, one can break the

surface up into simpler subsurfaces and approximate each subsurface separately.

3.3.2 Three-Dimensional Bidirectional Hermite Interpolation. -- As noted at the

conclusion of the previous section, transfinite bilinear interpolation sometimes does not produce

satisfactory surface approximations. Also, if a boundary surface is broken up into two or more

subsurfaces with each subsurface generated by transfinite bilinear interpolation, then that

boundary surface will have discontinuous first-order derivatives at all interfaces where different

subsurfaces connect. Here, a new technique for generating surfaces, referred to as 3-D

bidirectional Hermite interpolation, has been developed which does not have the

aforementioned shortcomings of the transfinite bilinear interpolation.

To illustrate the 3-D bidirectional Hermite interpolation, again consider the boundary

surface bounded by four twisted curves shown in figure 3-8. Information about the four

twisted curves may be given in analytical form, or they may be put into analytical form from

coordinates of the nodal points located on the curves by using either cubic spline or tension

spline interpolation described in Section 3.2. In either case, we end up with parametric

equations describing each of the curves in the following form:
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Xi=Xi(si) yi= yi(sl) Zi=Zi(si) (3.19)

where Xi, Yi, and Z i describe curve i and i = 1, 2, 3, 4. The parameter, si, represents the

approximate arc length along curve i as discussed in Section 3.3.1.

Recall that for the Two-, Four-, and Six-Boundary Methods, boundary surfaces in the

spatial domain are mapped onto coordinate planes in the transformed domain. Here, we map

the boundary surface shown in figure 3-8 onto the coordinate plane shown in figure 3-9 located

at ( = 0 in the transformed domain. Accordingly, we relate the s i parameters to _ and 7 by

equation (3.14).

By using equation (3.14) and the Four-Boundary Method with Hermite interpolants

described in Section 2.2, we obtain

• (_,7,(=0) = _,2(_,7,{=0) + A_(_,7,(=0)

_(_,7,(=0) = ¢12(_,7,_=0) + _u(_,7,(=0)

_(_,7,_=0) = _12(_,7,_=0) + A_(_,7,¢=0)

(3.20a)

(3.20b)

(3.2Oc)

where

_2(¢,7,¢=o)= x,(¢)h,(7)+ x2(¢)h2(7)

Ox(_,7=O,(=O) Ox(_,7=l,(=O)
+ 07 h3(7) + 07 h4(7)

Y'12(_,q,(=0) = YI(_) h1(7)+ Y2(_) h2(7)

-4-
ou(_,7=o,i=o)

o7 ha(7) +
Oy(_,7--1,(----O)

07 h4(7)

(3.20d)

(3.20e)

z'12(_,7,(----0) -----ZI(_) h1(7) "4" Z2(_) h2(7)

-4-
Oz(_,7=o,;=o)

07 h3(7) +
Oz(_,7----1,(--O)

07 h4(7) (3.20f)
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zx_(_,,7,C=o) = [_(_=o,,7,_=o) - e_2(_=o,,7,_=o)] hs(_)

-.}- [X(_=l,r/,_-----O) -- Xtl2(_-l,r],_=O)] h6(_ )

[o4_=o,o,i=o) o:e12(_=o,_,_=o)1 hr(_)
+ O_ - O_

r°_¢=1'_'I=°) 0e12(¢=1"7'¢=0)] h,_(_)
+ ' _ - O_ (3.20g)

zxv(_,o,_=o) = [v(_=o,,7,_=o) - u'_e(_=o,,7,¢=o)] hs(_)

+ [y(_=l,r/,(=O) -- Y'12(_=l,rl,(=O)] h6(_)

[Oy(_=O,r/,(=O) OY'12(_=O,rl,(=O)] hT(_)
+ ' -_ - O_

+ [OY(_=-_-_ rl'(=O) _ OY'12(_=l,rl,_=O)] hs(_ )o_ (3.20h)

ZXz(_,o,¢=o) = [_(_=o,o,i=o) - e_(_=o,_,i=o)] hs(_)

+ [z(_=l,r/,(=O) -- z'12(_----1,r/,(=O)] h6(_ )

r°_(_=°'_'¢=°) °z'_e(_Y_ ''_'¢=°)] hT(_)+t " _-_ --

+ [Oz(_ =___r/,(=O) Oz'z2(_ = 1,r/,(=O) 1- _ _,hs(_) (3.20i)

,9:e1_(_= o,,_,_=o) ox(_= o,rt= o,_=o) 0_(_ = o,,1= 1,¢=o)
O_ = h_(rl) O_ + h2(rl) O_

h3(rl)C92x(_ =O,r/= 0,(=0) 02x(_ --O,r/= 1,(=0)+ o_Or_ + h+(,_) 0_00 (3.20j)

ae 22(_= 1,,_,(=o) o_(_= 1,,_=o,_=o) oz(_ = 1,_= 1,_=o)
a_ = h_(,7) O_ + h_(,7) O_

h3(y)O2x(_ = 1,r/= 0,(=0) Oex(_ = 1,r/= 1,(=0)+ 0_0o + h+(_) 0_00 (3.20k)
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oqy' 12(_ =O,r/,_-"O) Oy(_=O,r/=O,_=O) Oy(_=O,r/= 1,_'=0)
= hi(.) 0_' + a:(,7) 0_.

+ h3(")O%(_=Om=O'¢=O)o_O,7+ %(,1) o%(_=o,_=o_o_1,¢=o) (3.201)

Oy']2( ( = l,tl,_=O ) 0_(_ = 1,_ = 0,¢ =0) 0y(_ = 1,_ = 1,¢=0)
"-- h](rl) O_ + h2(TI) O_

+ hz(¢)0%(_ =0_0¢1,¢ =0,i=0) + h4(.) 0%(_ =0_0¢1,¢ = 1,¢=0)

0e12(_=0,_,_=0) Oz(_ =0,t/= 0,¢=0) Oz(_ =0,t/= 1,(=0)
= hi(v) 0_ + h2(_) 0_

+ h3(_) °2z(_=°'_=°';=°) + h4(_)
02z(_ =O,r/= 1,_=0)

o_o_ o_o_

(3.20m)

(3.20n)

0e,2(_=lm,i=0)
0_

0z(_= 1,t/=0,(=0)
= h](_/) 0_

+ h2(_/) Oz(5=l,_=l'(=0)

= 1,_/----0,(=0) O2z(_= 1,t/= 1,(=0)
+ h3(_l)O2z(_ a_O_l + h4(tl) cO_O_l (3.200)

In the above equations, hi, h2, h3, and h 4 are given by equation (2.11) and hs, h6, h 7, and h s

are given by equation (2.24). The method for evaluating the partial derivative terms

appearing on the right hand sides of equation (3.20) is described below.

The first-order partial derivative terms in equation (3!.20) determine the shape of the

surface shown in figure 3-8 bounded by the four twisted curves given by equations (3.14) and

(3.19). These derivative terms also determine whether grid lines on that surface will intersect

the four twisted curves orthogonally or not. Since the only information we have about the

surface shown in figure 3-8 is the four twisted curves, these curves are used to derive

expressions for the first-order derivative terms in equation (3.20).

We shall illustrate how first-order derivative terms in equation (3.20) are calculated by

deriving expressions for 0x(_,_/=0,_=0) 0y(_,t/=0,(----0) 0z(_,_/=0,_=0) These three
0_/ ' Or/ , and 0_/

derivative terms are evaluated along curve 1in which _ varies between 0 and 1, 7/=0, and (=0
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(figs. 3-8 and 3-9). The method for deriving first-order derivative terms along the other three

twisted curves (i.e., curves 2, 3, and 4 in fig. 3-8) will be similar to the procedure described

below.

Expressions for the first-order partial derivative terms along curve I are derived in five

steps and they are

1. Determine a vector which is perpendicular to the plane formed by the vectors

tangent to curves 1 and 3 at one end of curve 1 (figs. 3-8 and 3-11).

2. Determine a vector which is perpendicular to the plane formed by the vectors

tangent to curves 1 and 4 at the other end of curve 1 (figs. 3-8 and 3-11).

3. Linearly interpolate between the two vectors determined in Steps 1 and 2

and denote this vector function as N,1.

4. Determine a vector function that is parallel to the cross product of N,I (Step

3) and a vector function tangent to curve 1. The vector function thus determined is

assumed to be tangent to the surface that we wish to approximate along curve 1.

5. Determine first-order partial derivative terms along curve 1 by forcing the

vector function formed by the first-order derivatives to be parallel to the vector

function determined in Step 4.

The details of these five steps are described below.

Step 1 - Determine Normal Vector at One End of Curve 1. The vectors tangent to

curves 1 and 3 at _=0 and t/=0 are given by

OXI(_=O) 0YI(_=0) 0ZI(_=0)
T_13 -- O_ I + _9_ J + 0_ K (3.21a)

T¢31 --
ozs(, =o)OX3(tl=O) OY3(_=O) J + K

Or/ I + O_ Or/

where I, J, and K are unit vectors pointing in the x-, y-, and z-directions, respectively.

(3.21b)
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Thevectorperpendicularto the plane formed by the above two vectors is given by

NI3 = T6I 3 X To31

_-{ oYl(e=o)oeoz_(,=o)or/ozl(e=o)oeoY_(e=o)or/}

oxl(_=o)oz,(r/=o) ozl(_=o) ox3(r/=o)}-- 0_¢ Or/ O_ Or/ J

{o_(e=o) o_(,=o) oy_(e=o)ox_(e=o)}+ 0_ Or/ 0_ Or/ K (3.22)

Step 2 - Determine Normal Vector at Other End of Curve 1. The vectors tangent to

curves 1 and 4 at _=1 and r/=0 are given by

ox1(_=l ) ovi(_=1) oz_(_=l)
T_14 -- be I q- 0_ J q- 0_ K (3.23a)

OX 4 (r/=0) I + OY4 (r/----0) j + OZ 4 (q-----0) K (3.23b)
To41 -- Or? Or] 077

and the vector perpendicular to the plane formed by the above two vectors is given by

N14 _ T_I 4 X Tn41

{ OYI(_=I ) OZ 4 (r/=O) 0Z1(_=1 ) OY 4 (_=0) _ I= 0_ Or/ 0_ Or/ J

- { 0X1(_=1 ) OZ4(q=O)O_Or/ 0Z1(_=1 ) OX4(r/=O)}o_Or/ J

{ 0X1(_=1 ) OY 4 (r/=0) 0Y1(_=1 ) OX 4 (_=0) _ K (3.24)+ O_ Or/ O_ Or/ )

Step 3 - Linearly Interpolate between Two Normal Vectors. In this step, we linearly

interpolate between the two normal vectors obtained in Steps 1 and 2 to produce the following

vector function:
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Nel - (1 - _) N1a+ _ N14 (3.25)

whereN13andN14aregivenby equations(3.22)and (3.24).

Step4 - Determinea VectorFunctionTangentto the Surface.

infinite

developedto determinewhichsurfaceis to approximatethe surfaceshownin figure3-8.

the surfaceselectedis the onethat will pass through curve 1 as well as curves 3 and 4.

the vector function tangent to the surface at curve 1 can be approximated by

Since there are an

number of surfaces that can pass through any given curve, a strategy must be

Here,

Thus,

E,1 = Tel X Nel (3.26)

where N_I is given by equation (3.25) and Tel is a vector function tangent to curve 1 given by

0YI(_) OZI(_) (3.27)OXl(_) I +_ J + K
T_I -- O_ 06. O_

Step 5 - Determine Expressions for First-Order Derivatives. Now that we know along

which surface partial derivatives with respect to ,1 at curve 1 can be made, we can derive

expressions for the first-order partial derivative terms Ox(_,r/=0,¢=0) 0y(_,r/=0,_=0) and
0r/ ' 0r/ '

0z(_'r/=0'_=0) that appear in equation (3.20). Since we desire grid lines on the surface to be
0r/

perpendicular to the boundary curve (curve 1 in this case), the vector function tangent to the

r/-direction, T,1 , must be parallel to the vector function, E,1 , derived in Step 4. This can be

expressed mathematically as

T.I X E.I = 0 (3.28)

where

0y(_,r/=0,_=0) 0z(_,r/----0,_=0)
0x(_,r/=0,_----0) I -4- J -I- K (3.29)

To 1 = Or/ Or/ Or/
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The desired expressions for the first-order partial derivative terms are obtained from

equation (3.28) in a manner very similar to the derivation of equation (2.12). Again, "K

factors" which appear in equation (2.12) can also be used here to ensure that grid lines do not

overlap each other and to create a smoother surface.

3.3.3 Parametric Bihyperbolic Spline Interpolation. - To illustrate how parametric

bihyperbolic spline interpolation approximates surfaces, consider the organized set of IM x JM

nodal points shown in figure 3-6. These points lie on surface H and are given on a rectangular

xy-grid. We will call this collection of nodal points N and represent each nodel point within N

by

N(i,j) = {x 6, yq, zij }, i= 1, 2, ..., IM, j= 1, 2,..., JM (3.30)

We wish to obtain a parametric description of surface H by interpolating between the

nodal points of N. We will accomplish this in three steps. First, we will calculate approximate

arc lengths along lines of constant i and j. Next, we will determine values of the derivatives at

the nodal points which lie along the edges of surface H. Finally, we will use bihyperbolic spline

interpolation to interpolate between the nodal points using our approximate arc lengths as the

independent variables. This approach is similar to that suggested by Smith (ref. 36).

We begin the first step by denoting approximate arc length along a line of constant i as

s and approximate arc length along a line of constant j as t. We calculate s and t for each

nodal point using the following expressions:

sll ---- tl_ = 0 (3.31)

sij = %1 j + _(xij-xi-1 j)_ + (Yij-Yi-_ j)_ + (zq-zi-1 j)2

tij -- ti j.1 + 4(xij-xi j_l) 2 + (yij-yi j_l) 2 -t- (zij--Zi j_l) 2

(3.32a)

(3.32b)
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where

i -= 2, 3 .... , IM, j-- 2, 3,..., JM

Here, s/j and tij are the s and t values at nodal point N(i,j).

Having accomplished this, the next step is to calculate values for the derivatives at the

nodal points which lie along the edges of surface H. This information is required by the

bihyperbolic spline interpolation method. The derivatives that are required are as follows:

Ox Oy and Oz
Os' Os' _-_ at N(i,j), i = 1, IM, j : 1,2,..., JM (3.33a)

Ox Oy and Oz (3.33b)
Or' Or' _-_ at N(i,j), i = 1,2,..., IM, j--- 1, JM

02x 02Y and 02z
Os Ot' Os Ot' Os Ot

at N(1,1), N(IM,1), N(1,JM)

and N( IM, JM) (3.33c)

We recommend using second-order-accurate finite-difference formulas to calculate these values

from the coordinates of the nodal point coordinates. A comprehensive list of finite-difference

approximations for derivatives appears in reference 60.

Once we obtain values for the derivatives in equation (3.33), we are now ready to use

bihyperbolic spline interpolation to form an approximation to surface H. Here, we follow

closely Sp_th's description of bihyperbolic spline interpolation found in reference 50. In

bihyperbolic spline interpolation, we must determine the coefficients aqk I of the expression

4 4

U(s,t) : E E aij kl q_k(a't_i'sij '8i-I-1 J) ¢l(t'_J'tiJ 'ti-I'l J)

k=l l=l

(3.34)

where u represents either x, y, or z in the Cartesian system. The function u(s,t) in equation

(3.34) must take on tile specified values of x, y, or z (depending on which one it represents) at
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the appropriate nodal point locations while maintaining continuity up to the second-order

derivative everywhere. The functions Ck and ¢l are given by

where

¢i( s, _i, sij, si+l j) = s - sij

¢2(s, eq, sij , si+ 1 j) = si+ 1 j- s,

¢3( s, _i, sij, si+_ j) = ¢(s-sij, oq, sij, si+ 2 _)

¢4( s, _i, si_, si+_ j) = ¢(si+1 j-s, oq, sij, si+ I j)

ZXsijsinh(_s ) -- s sinh(_ZXsij )

¢(s, oq, sij , si+ 1 j) = sinh(_i/ksij ) _ oti/ksij

Asij = si+ 1 j-- sij

(3.35a)

(3.35b)

(3.35c)

(3.35d)

(3.35e)

(3.350

Here, a i and flj are tension parameters in the s and t "directions," respectively. They are

constrained by 0 < c_i < oo and 0 < flj < oo with tension increasing as they approach

infinity. Each grid cell (fig. 3-6) can have different a i and flj values depending on the amount

of tension desired. Here, we note that as a i and flj approach zero, the bihyperbolic spline

surface approaches a bicubic spline surface (ref. 50).

The reader may recognize that equation (3.35e) contains expressions similar to those in

equation (3.12) of Section 3.2.2. In fact, equation (3.12) can be cast in the form

4

Xi(s) = E Aik Ck(s'ai'si'si+l) (3.36)
k--1

where Ck is given by equation (3.35), and the Aik's are the coefficients which contain the

unknown X"(si) values. Thus, the bihyperbolic spline described by equation (3.34) is merely

an extension of the tension spline of Section 3.2.2.

plj --

We begin the algorithm for obtaining the coefficients, ai#l, by letting uij = u(sij, tij),

Ouij __ Ouij O2uij
Os ' qij -- --o-i-' and r 6 = Os Or" Recall that uij is known at all nodal points, while P6'

qij, and rij are only known at the nodal points which lie on the boundaries of H. Values of Plj,
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qij, and rq at nodal points other than those on the boundaries can be determined by solving

the following 2(IM) + JM + 2 linear system of equations:

bi-1 j Pi-1 j q- (bi-1 j vi-1 j -t- bij vii ) Pij -t- bij Pi-I-1 j

uij--ui-1 j ui-I-1 j--uij

= bi__j (vi__j + 1) ZXsi__j + b_j(v_j+ 1) 7X_

for j = 1, 2, .... JM , i = 2, 3, ..., IM--1

ci j-1 qi j-1 -I- (ci j_ 1 wi j_ 1 + cij wij) qlj + cij qi j-t-1

_._ l _uij -- ui j-1 j-I-1 -- uij
Ci j-1 (Wi j-1 q- _' -A'-_iT1 "Jr cij(wij q- 1) ui _i

for i = 1, 2, ..., IM , j = 2, 3, ..., JM--1

bi. I j ri_ I j + (bi_ 1 j vi_ 1 j --t- bij vii) rij + bij ri+I j

. qij-- qi-1 j 1)qi+ ....= % j + 1) + b,/v,j +

forj = 1, JM , i = 2, 3,..., IM--1

ci j-1 ri j-1 -t- (c i j-1 wi j-1 q- cij wij) rij q- cij ri j÷1

= cij. 1 (wij-1 q- 1)P ')_pij-lAtij_l "4- cij(wij -4- 1)PiJ +l-pij

for i = 1,2 .... , 1M , j = 2, 3, .... JM-1

Here, vii, wij, bij, and c/j are given by

vij = (d+(s-sij, ai, sij , si+ 1 j))s--_si+1Si ---- 1, 2, ..., IM--1)

Wij --_ (d%b(t--tij , _i, $ij, ti-F1 j))t-_t i j-kl (j = 1, 2, ..., JM-1)

a i2 Asijsinh( oti/ksij )

bij = (vij2 1)(sinh(otiAsij)--oQAsij)
(i = i, 2, ...,IM--1)

flj2 /Xtijsinh([3 iAtij)

cij = (wij2_l)(sinh(_iAtij)_13iAtij)
(j = 1, 2, ..., JM--1)

(3.37a)

(3.37b)

(3.37c)

(3.37d)

(3.38a)

(3.38b)

(3.38c)

(3.38d)
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The system of equations described by equations (3.37) and (3.38) is obtained by requiring that

the function u and its partial derivatives p, q, and r be continuous at all of the interior nodal

points in N. This system has a tridiagonal coefficient matrix that can be shown to be

diagonally dominant (ref. 50). Thus, the system may be easily solved for the unknown values

of P6' qij, and rij by using the Thomas algorithm.

We now solve for the a6kl's of equation (3.34) by first defining a 4x4 coefficient matrix

within each grid cell as

Aij = aijkt (k, I = 1, 2, 3, 4)
(3.39)

This matrix can be found from the following matrix product expression (ref. 50):

Aij = C(Asij,vij) K6[C(Atij,wij)] T
(3.40a)

The variables C and K/j are matrix expressions which are given by the following:

C(g,h) =

o o o

1/g 0 0 0

1 --1 1 --h
g(1--h) 1--h 2 g(1-h) 1--h 2

1 h 1 1

g(1-h) 1--h 2 g(1--h) 1--h 2

(3.40b)

K/j =

uij qij ui j4-_ qi j-t-1

P6 rij Pi j÷_ ri j÷_

ui-t-1 j qi-I-1 j ui-I-1 j-I-1 qi-I-1 j-I-1

Pi+l j ri+l j Pi+l j+l ri+l j+l

(3.40c)
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Having found the coefficients aijkl, we can now use equation (3.35) to calculate u(s,t) at any s

and t.

Returning to the problem of obtaining a description of surface H, we perform three

bihyperbolic interpolations (one for u=x(s,t), one for u=y(s,t), and one for u=z(s,t)) using the

procedure above. In this way, we obtain the parametric representation of surface H that is

necessary for the grid generation technique presented in Section 2.0.
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4.0 GENERATION OF SINGLE AND COMPOSITE GRIDS

In the previous two sections, the details of the algebraic grid generation methods used

in GRID2D/3D are described. In this section, we demonstrate the usefulness of GRID2D/3D

by using it to generate a number of single and composite grids within complex-shaped 2- and

3-D spatial domains. Recall from Section 1.0, a single grid is a grid system based on one

boundary-fitted coordinate system, and a composite grid is a grid system made up of two or

more single grids patched together.

4.1 Single Grids

All of the details involved in using the Two-, Four-, and Six-Boundary Methods to

generate single grids were presented in Sections 2.0 and 3.0. In fact, while illustrating these grid

generation methods, several single grids were generated (figs. 2-3, 2-4, and 2-8). In this

subsection, several additional single grids generated by GR.ID2D/3D are presented to illustrate

the capabilities of GRID2D/3D. Also presented in this section is a brief discussion on how to

smooth discontinuities in grid systems that arise from boundary discontinuities.

Figure 4-1 shows a 2-D single grid generated for an irregular, 2-D, coastline topology

using the Two-Boundary Method. A stretching function was used to cluster grid points near

the coastline where complex flow conditions are expected. The coastline curve was formed by

using parametric tension spline interpolation.

Figure 4-2 shows a 2-D single grid around a sharp bend generated by using the Two-

Boundary Method. This figure illustrates how boundary discontinuities can propagate into the

interior of the grid. The slope discontinuity of the r/ grid lines along i = 11 can be eliminated

by applying the following equations:
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n+l n n n n
Yi,j = Yij + .25 (Yi+lj -- 2 Yij q- Yi-lj) (4.1a)

X n X n. . X nn+l X .n. "4- .25 ( i+l,j -- 2 ',3 "[" i--l,j)Xi,j t,3 (4.1b)

where i = Ii-m,...,I1,...,Ii+m (m can be zero or some positive integer constant) and j =

2,3,...,JL-1. In order to smooth the grid shown in figure 4-2, equation (4.1) needs to be

applied a number of times; that is, n = 0, 1, 2, 3, ... with n = 0 being the grid shown in figure

4-2, n = 1 being the first correction, n = 2 being the second correction, and so on. By using

equation (4.1) repeatedly, the grid shown in figure 4-2 was smoothed as shown in figure 4-3.

Figure 4-4 shows a 2-D single grid around an airfoil. This grid was generated by using

the Two-Boundary Method in which stretching functions were used to cluster grid points near

the airfoil surface in anticipation of the complex boundary layer flow there.

Figure 4-5 shows a 2-D single grid for an irregularly shaped, four-sided region. That

figure clearly shows how orthogonality of the grid lines is enforced at each of the four

boundaries of the spatial domain. This grid was generated by using the Four-Boundary

Method and stretching functions were not used. The four boundary curves of the spatial

domain shown in figure 4-5 were represented in parametric form by tension spline

interpolation.

A 3-D single grid between the twisted blades of a radial turbine is shown in figure 4-6.

The Two-Boundary Method was used to generate this grid and a stretching function was used

to cluster grid points near the blade surfaces. The blade surfaces were generated by using

tension splines in conjunction with bilinearly blended transfinite interpolation.

As an example of the efficiency of GR.ID2D/3D, the typical real time taken to generate

a 21 x 21 x 21 3-D single grid is 45 seconds on an IBM AT compatible personal computer

running at 12 MHz.
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4.2 Composite Grids

In Section 1.1, it was noted that GRID2D/3D can be used to generate composite grids

as well as single grids. Also, it was noted that composite grids which can be generated by

GRID2D/3D include those that are completely discontinuous, partially discontinuous, and

partially continuous (fig. 1-2). For completely or partially discontinuous composite grids such

as those shown in figures. 1-2(a) and 1-2(b), each single grid within the composite grid can be

different from any other in structure and in the number of grid points. Thus, each single grid

within such composite grids can be generated independently of the other single grids, and each

single grid can be generated in the manner described in Sections 2.0 and 4.1. How the

different single grids of such composite grids are patched together once they are generated is

described in Sections 1.1.1 and 1.1.2. Since discontinuous composite grids can be generated

rather easily and patching is trivial, no further discussions concerning them will be given.

For partially continuous composite (PCC) grids, each single grid within it must satisfy

a number of compatibility conditions so that when the different single grids are patched

together, the resultant composite grid will have some degree of continuity (Section 1.1.3).

PCC grids such as the one shown in figure 1-2(d) are often difficult to generate. However,

when it is possible to generate them, they are the easiest to use with FD and FV methods to

obtain solutions to partial differential equations. Below, we discuss how PCC grids can be

generated.

4.3 Partially Continuous Composite Grids

PCC grids are generated by GRID2D/3D in two major steps. The first step involves

partitioning the spatial domain into zones. The second step involves constructing grid systems

64



that will be continuous from one zone to another. These two steps are described in detail

below.

4.3.1 Partitioning. - The first step in constructing a PCC grid is to partition the

spatial domain of interest into a finite number of contiguous zones. The partitioning process

involves answering three interrelated questions:

1. How should the spatial domain be partitioned into zones?

2. Based on that partition, what grid structure is to be used within each zone?

3. Based on that partition and grid structure selections, how should the

different zones be mapped to the transformed domain so that the resultant

composite grid will have some degree of continuity?

The answers to these questions depend on the geometry of the spatial domain and the

physics of the problem for which the grid is being generated. For any given problem, several

different choices are usually possible. However, for simplicity, the choice containing the least

number of zones is often the most desirable.

An example illustrating one strategy at partitioning is shown in figure 1-3(a). The

boundaries of that spatial domain contain a backward facing step, a flat wall, and a wedge-

shaped obstacle. The fluid is flowing from left to right. In figure 1-3, the spatial domain is

partitioned by using free-streamline theory. More specifically, a new zone is set up where

separation is expected (e.g., at the backward step and at the rear of the wedge-shaped

obstacle) or where a flow will separate into two streams (e.g., at the nose of the wedge-shaped

obstacle). The structure of the grid within each zone in figure 1-3(a) was chosen to be H-type.

This structure aligns the main flow direction with the grid lines which is important because it

reduces dissipation error and permits the use of the thin-layer Navier-Stokes equations. Also,

this structure allows grid lines to be clustered near solid wall boundaries readily as well as
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allowscontinuity of grid lines and their derivatives from one zone to another. Figure 1-3(b)

shows how the different zones in figure 1-3(a) are mapped to the transformed domain.

As a second example, consider the 2-D inlet of an aircraft engine shown in figure 4-7.

This geometry would be awkward to handle with a single grid due to the separation of the

internal flow from the external flow by the cowl. Figure 4-8 shows a partitioning of this

spatial domain into two zones and the transformed domain to which it is mapped. Other

configurations involving more than two zones are certainly possible, but more complicated

configurations are unnecessary unless the physics of the flow dictates their use. If we knew

something about the flowfield within this spatial domain, we might wish to introduce new

zones in order to better resolve the physical aspects of the flow (e,g., to make capturing of

shock waves more convenient). In some cases, we might even want to solve different

governing equations in different zones in order to obtain solutions more rapidly.

As a third example, consider the spatial domain shown in figure 4-9. This is a 2-D

region near a wind tunnel wall with slots cut into it. Two possible partitions for this spatial

domain are shown in figure 4-10. The partition shown in figure 4-10(a) contains six zones. A

better partition with only three zones is shown in figure 4-10(b).

4.3.2 Grid Generation with Patching. - Once we have partitioned the spatial domain

of interest into zones, we are ready to generate a grid for each zone. For partially continuous

composite (PCC) grids, the grid generated for each zone must be such that when they are

patched together, the resultant composite grid has some degree of continuity. It turns out

that this requirement necessitates some minor modifications to the Two-, Four-, and Six-

Boundary Methods presented in Section 2.0. In this section, these modifications are described

in the framework of the Two-Boundary Method by applying it to generate a PCC grid in the

2-D inlet of the aircraft engine shown in figure 4-7.
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Step 1 - Define the Coordinate Transformation. We seek a coordinate

transformation of the form given by equation (2.19).

Step 2 - Select a Time-Stretching Function. We set

equation (2.2).

Step 3 Select Two Boundaries of Each Zone. We choose curves 1 and 2 for

zone 1 and curves 5 and 6 for zone 2 (fig. 4-8). For each zone, we map these two curves to

coordinate lines _?=_?low and _?=_?high, respectively. Here, _low, Thigh, Glow, and _high are

defined as the coordinate lines in the transformed domain which correspond to the boundaries

of a zone: Thus, for zone 1 we have

r equal to t according to

x_ = _(_,'7=,lto_) = x2(_)

Y2 = y(_,'7=,Ttow) = Y2(_)

Y2 = Y(_,'7='lh_gh)= Y2(_)

(4.2a)

(4.2b)

(4.2c)

(4.2d)

where _?low=O and qhigh=0.5. X 1 and ]I1 are the x- and y-coordinates of curve 1, and X 2 and

72 are the x- and y-coordinates of curve 2.

For zone 2, we have

x5 = _(_,'7='7to_) = x5(¢)

r5 = y(¢,'7='Tto,_) = Ys(_)

x6 = 4¢,'7='Th;g_) = x6(_)

r6 = Y(_,_=_ihigh) = Y6(_)

(4.3a)

(4.35)

(4.3c)

(4.3d)

where qlow=0.5 and qhigh----1. X 5 and )'5 are the x- and y- coordinates of curve 5, and X 6

and ]I6 are the x- and y-coordinates of curve 6.
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The other two curves in each zone (curves 3 and 4 in zone 1, and curves 7 and 8 in

zone 2) are mapped to coordinate lines _=_low and _=_hlgh in the transformed domain. For

our example, _low= 0 and _high--" 1 for both zones 1 and 2.

If we were using the Four- or the Six-Boundary Method, then we would have selected

four or six boundaries in each zone as described in Sections 2.2 and 2.3.

Step 4 - Describe the Two Boundaries of Each Zone in Parametric Form. We now

represent the four curves selected in Step 3 (two for each zone) in parametric form. Here,

information about the four curves is given in the form of four sets of discrete points which lie

along the curves. Thus, we use the 2-D parametric tension spline interpolation method

described in Section 3.2.2 to generate the parametric equations in the form dictated by

equations (4.2) and (4.3). By using this method, we generate the 2-D curve approximations

shown in figure 4-11.

Step 5 - Define Curves That Connect the Two Boundaries in Each Zone. As before, we

use transfinite interpolation to derive curves which connect the two boundaries of each zone

described in Step 3. For Lagrange interpolation, the equations for the connecting curves

between two boundaries in any one zone are

= t2( ) + Z2( )

= 12( ) + t2(,7)

(4.4a)

(4.4b)

where the blending functions, 11 and 12, are given by

TI'_high (4.4c)
11(_) -- _low--tlhigh

T1--711ow (4.4d)
12(_) -- _high--tIlow
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As stated in Section 2.1, the curves described by equation (4.4) are straight lines which

do not, in general, intersect the boundary curves perpendicularly. This could lead to slope

discontinuities in grid lines which cross zonal interfaces (fig. 4-12). For this reason, we

recommend the use of transfinite interpolation based on Hermite interpolation when patching.

Hermite interpolation allows the connecting curves to intersect the boundary curves

perpendicularly. Thus, grid lines in adjacent zones which meet at the zonal interface will

possess identical slopes at the interface. This eliminates slope discontinuities of the grid lines

at zonal interfaces.

For Hermite interpolation, the functional form for the connecting curves between two

selected boundaries of a zone is as follows:

_(_,7) = _(_,7=Ttow) h1(7) + _(_,7=Th_gh) h2(7)

04_,7=7_o_) h_(7) + h4(7)
-_ 07 07

(4.5a)

Y(_,7) = Y(_,7=Ttow) hl(rl) + Y(_,7=Thigh) h2(7)

0y(_,7=Tto_)
OY(_,7=Ttow) h3(7 ) + h4(7 )

-_ 07 07

In the above equations, hi, h2, h3, and h 4 are constrained by

(4.5b)

hI(7 = 71ow) = 1 h1(7 = 7high) = 0

0hI(7 = 7high)0h1(7 = 7to.,)_ 0 = 0
07 -- 07

h2(7 = 7low)= 0

0h2(7 = 7tow) = 0
07 07

h2(7 = 7high) = 1

0h2(7 = 7high) = 0

h_(7 = 7tow) = 0

0h3(7 = 7low) = 1
07

h3(7 = 7high) = 0

0h3(7 = 7high) = 0
07
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h4(_ = _o_) = O, h4(_ = _hOh) = 0

Oh4(;? -- ;?low) = O,
O0 OO

Oh4(q = TIhioh) = 1

With these constraints, hi, h e, h 3, and h 4 become

h I = al;? 3 + bl;? 2 -t- Cl;? -4- d I

h 2 = a2_l 3 -b b2;? 2 + c2;? + d2

h 3 ---- a3;? 3 -4- b3;? 2 -}- c3;? "4- d3

h 4 -_ a4;? 3 "4- b4;? 2 A- c4_1 -4- d4

where the following expressions hold:

(4.6a)

(4.6b)

(4.6c)

(4.6d)

2

al = 3(;?fo_, 2 ;? 2 3 3-- ;?high)( low -- ;?high) + 2(3;?low;?high--2;?low-- ;?high)

(4.6e)

2 2
--3al(qlow--;?high)

b I = 2(qlow_;?high)

c I = --3;?_wa 1 -- 2;?lowbl

dl _;?_igha I 2= -- _highbl -- _highCl

a2 = -- a 1

b2 -= - bl,

C2 _ -- el,

d2 = 1 -- d I

(4.60

(4.6g)

(4.6h)

(4.6i)

(4.6j)

(4.6k)

(4.61)

--(;?lo_,--;?hOh)
a3 = 2 2 2 3

3( _llow --;?high )( ;?low --;?high)'4- 2( 3 ;?low ;?h igh - 2 ;?low --;?3igh )

2 2
1--3a3(;?1o w- ;?high)

b3 = 2(;?low_;?high)

c 3 = 1 -- 3;?_owa3 -- 2;?lowb3

d3 3 2-_- --_Thigh a3 -- ;?high b3 -- ;?high C3

a4 _ a3

(4.6m)

(4.6n)

(4.60)

(4.6p)

(4.6q)
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2 2
1 --3a4(qlow--qhigh)

b 4 --- 2(qlow_rlhigh)

c 4 -- 1 -- 3yfowa4 -- 2qlowb 4

d4 -- _igh a4 2: -- _highb4 -- _highC4

(4.6r)

(4.6s)

(4.6t)

Similar to the examples in Section 2.0, the partial derivative terms in equation (4.5) are

chosen so that the connecting curves will intersect the two boundary curves perpendicularly.

Thus, for zone 1 we have

Ox(_,q-= qlow) _ _ KI I(_) 0 Y0__I(_) (4.7a)
07

OY(_Jl=qtow) KI1(_)OXJ_(_) (4.7b)Oq =

=,Thigh) = _ K )a Y02__2( (4.7c)

OY(_'rl=_lhigh) KI2(_)OXo2-_(_) (4.7d)
Orl =

where qlow ---- 0 and rlhig h _- 0.5. Likewise, for zone 2 we have

Ox( _,q=qlow) Yb( _) (4.8a)

OY(_'q=qlow) -- K21(_)OXo._5(_) (4.8b)
077

ax( _,q: Thigh) --_ _ K22( _) 0 Y6( _)
O_ O_

(4.8c)

aY( , = high) K22( )aO6( ) (4.8d)
0T/ =

where qlow = 0.5 and rlhig h : 1.0.

An alternative procedure to the one just described for calculating x(_,q) and y(_,_/) is

to do two mappings for each zone. The first mapping is from (x,y) to (_',q') with boundaries

of both _' and r/' between 0 and 1. The second mapping is from (_',_/') to (_,r/) with the
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boundaries of _ between _=_low and _=_high and the boundaries of '7 between ?=?low and

'7=rlhig h. The first mapping can be accomplished by using the equations in Section 2.0 with

and r/ replaced by _' and r/'. The second mapping is given by _ = _tow + _' (_high -- _low)

and '7 = "7low "_ '7' ('Thigh- '7low)"

Step 6- Diseretize the Domain. We discretize the domain in the _-r/-r coordinate

system by replacing the temporal domain with equally incremented time levels and by

replacing each zone of the spatial domain with equally spaced grid points (fig. 4-13(b)). The

time levels are described by equation (2.14). For our two-zone example, the grid points in

zone 1 are located at (_i''Tj)' where

and

_i = (i--1) /_ , i=1, 2 .... , IL, (4.9a)

'Tj = (j-l) A'7 , j=l, 2, ..., JL1, (4.9b)

A_ -- 1 A'7 -- 1 (4.9c)
1L-- 1 JL-- 1

The grid points in zone 2 are located at (_i,'Tj), where

_i = (i--1) /_ , i= 1, 2, ..., IL (4.9d)

'Tj = (j--l) A'7 , j= JL1, JLI+I, .... JL (4.9e)

By substituting equation (4.9) into equation (4.5), we obtain the locations of the grid

points in the x-y-t coordinate system (fig. 4-13(a)).

We note that grid points ILl through IL along grid line JL1 in the transformed

domain represent two grid points in the spatial domain. When using this grid to obtain

numerical solutions, special care must be exercised to ensure that the correct grid point is used

at the appropriate situation.

72



Step7 - Control the Distribution of Grid Points in Each Zone. For high-speed flows

through the inlet, we expect large velocity gradients next to all solid surfaces. Thus, grid

points need to be clustered near solid surfaces. With this in mind, we use stretching functions

to cluster grid points near curves 1 and 2 for zone 1 and near curve 5 for zone 2. The new

distribution of grid points is shown in figure 4-14.

Here, we make a few comments about the continuity of grid lines and grid spacings

across zonal interfaces. In the above example, grid lines remained continuous along the

portion of the zonal interface which does not represent a "physical" boundary. This is a

desirable situation since it simplifies the numerical algorithm which will be used to investigate

the flow in the spatial domain. Proper allignment of grid lines at the zonal interface in this

case is made possible by using an appropriate stretching function in each zone. Thus, one

should exercise care when constructing a grid to ensure that grid lines remain continuous

across the sections of the zonal interfaces which touch each other in the spatial domain. For

our example, we also note that the grid spacing in the _/-direction must not change too

abruptly across the zonal interface. Grid spacing in the y-direction is defined as the distance

between adjacent grid points along a grid line of constant _. As with grid alignment, proper

grid spacing at the zonal interface depends upon using an appropriate stretching function in

each zone.

Step 8 - Calculate Metric Coefficients. For the spatial domain shown in figure 4-7,

the five metric coefficients which need to be evaluated are rt, _x, r/z, _y, and t/y. These metric

coefficients can be determined by using equation (2.28). We note that one-sided differencing

should be used when calculating partial derivative terms at grid points which lie along the

portions of the zonal interface which do not touch in the spatial domain. Central differencing

can be used at the other grid point locations along the zonal interface.
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5.0 SUMMARY

A computer program - referred to as GRID2D/3D -- has been developed to generate

single and composite grid systems in complex-shaped 2- and 3-D spatial domains. This

technical memorandum describes the details of the algebraic grid generation methods used in

GRID2D/3D, namely, the Two-, Four-, and Six-Boundary Methods. This technical

memorandum also describes the methods used to derive parametric representations of curves

and surfaces needed by the grid generation techniques. Several grid systems generated by

GRID2D/3D for various 2- and 3-D spatial domains were presented to illustrate that

GRID2D/3D is efficient and capable of handling complex geometries.
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(A)

(B)

(C)

(a) SIRUCTURED,

(b) UNSTRUCTURED.

(c) MIXED (PARTLY STRUCTURED, PARTLY UNSTRUCTURED).

FIGURE 1-1. - TYPES OF GRID SYSTEMS.
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1

(A)

/--GRID I /,--GRID 2

(B)

/_GRID I /--GRID 2

(C)

r-GRID I GRID 2

(D)

(a) CO@IPLETELY DISCONTINUOUS.

(b) PARTIALLY DISCONTINUOUS.

(c) PARTIALLY CONTINUOUS.

(d) PARTIALLY OR COMPLETELY CONTINUOUS.

FIGURE I-2. - TYPES OF COMPOSITE GRIDS.
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GRID

_/__/__!IIIJ/XYIIZ/////I//i/I/III/////// /llJ i rl_P2

/7111 tl/1111IIIit111 Iltl III,

_X
(A)

I

!

I
(B)

(a) IN SPATIAL DOMAIN (x-y COORDINATE SYSTEM).

(b) IN TRANSFORMED DOMAIN (_-riCOORDINATE SYSTEM).

FIGURE I-3. - CONTINUOUS COMPOSITE GRID SYSTEM MADE UP OF FOUR SINGLE GRIDS.

GRID

i- I

/r 2

I"_ il

J

S

,- GRID 1
/

/
/

FIGURE I-4. - PARTIALLY DISCONTINUOUS COMPOSITE 6RID THAT APPEARS LIKE A PARTIALLY OR

COMPLETELY CONTINUOUS COMPOSITE GRID.
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I I

_)

I j

'_)

(d)

I IGURF 2 1. - EXN'IPI ES OF SPAIIAL DOMAINS EttAT ARE flELL-SUIIED FOR TIlE TNO-

BOUNDARYMETtlOD. TItE TWOBOUNDARIESSUGGES]ED ARE StlOWNAS SOLID LINES IN TilE

2-D CASE AND SttADED SURFACES IN TIlE 3-D CASE.

(e)

Y

surface 2
_///_. ,,,,'I surface 5

J .

surf 3 ___lgr_ce a

ce 4 surface

su_ace I S_face 6 _ I
surface 1

(a) (b)

(a) IN x-y-z-I C_RfflNATE SYSTEM.

(b) IN _-q-_-T C_RDINAT£ SYSTEM.

FIGURE 2-2. - SPATIAL _IN.
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(a) (b)

(a) IN SPATIAL DOMAIN.

(b) IN IRANSFORMEI)DOMAIN.

FIGURE 2-3. - GRID SYSTEMS,

Y

-J j_

i ,,,1_

,I

.,,,,
I

7,.

FIGUR[-2-1t. - GRID SYSTEM IN IItE SPATIAL DOMAIN AFTER STRETCHING. GRID IS COM-

PUTER GENERATFD.
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Y

(a)

curve a

1.0

0.0
0.0

S curve 2

curve 3

1.0

f curve a

(b)

(a) IN x-y COORDINATE SYSTEM.

(b) IN _-q COORDINAIE SYSTEM.

FIGURE 2-5, - SPATIAL DOMAIN.

y
cur e 2

curve

fIGURE 2-6. --APPROXIMAIIONS OF CURVES I, 2, 3, AND q OBIAINED BY USING

PARAMEIRIC TENSION SPLINE INIERPOEAIlONS. TIIECURVES ARE COMPUIER

6ENIRAIID AND NOI)ALPOINIS ARE DENOIED BY o.
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2

CU£Ve _='

Cu£ve AT-_

CU£Ve ,

curve

X

'6"",-curve 3'

f curve I

• I

FIGURE 2-7. - MAPPING IIEIWEENTIIESPATIAL AND TRANSFORMED DOMAINS OBIAINED BY USING EQUATION (2.2T). NOTE fIIM CURVES 3' AND 4' IN TIIESPATIAL

DOMAIN ARE MAPPED TO COORDINAIE lINES ( : 0 AND _ = I IN THE TRANSFORMED DOMAIN, RESPECTIVELY.

(a)

t
!

ZL I IL

(a) IN SPATIAL DOMAIN.

(b) IN TRANSFORMED DOMAIN.

FIGURE 2-8. - GRID SYSTEM.

(b)
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_unF^c_: _ \ i \ •

.........

./
/

//J

/
/

#

(A'

rl

S SURFACE._

SURFACE 3 "_ _ SL',r-./ t

(a) SPATIAL DOMAIN IN x-y-z-t COORDINATE SYSTEM.

(b) TRANSFORMED DOMAIN IN _-q-_-T COORDINATE SYSTEM.

FIGURE 2-9. - SPATIAL DOMAIN.

line tanentg to __ connecting curve c

curve c at point b

f boundary curve d

' point .b . . . .... .

line tangent to boundary d at point b

FIGURE 2-I0. - DIAGRAM SHOWING flOW ORTHOGONALITY OF A CONNECTING CURVE AT A

BOUNDARY DOES NOT GUARANTEE ORTHOGONALIIY AFTER THE CONNECTING CURVE HAS

BEEN REPLACED BY GRID POINTS.
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g

X 1 : AIS3 _ BI s2 * CIS • DI

r Xn = An $3 _ Bn S2 + C n _ O n

_m_ X. = A s 3 _ 3.s 2 + C. ÷ O.

#X(SO) X(s I ) i i" I I

- ' x(s ) _(sn)

X(si) ' n-1

,,,--[ntecva[ 1_ -Interval i_

'Va,

s 1 si_ 1 s i Sn_ 1

Spl[ne Parameter, s

FIGURE_-1. - NOTATIONUSEDIN DERIVINGPARAMETRICCUBICSPEINES.
NOTEDBY o.

_[nterval n

NODALPOINTSAREDE-

_X

/
Y

(a) CYCLICENDCONDITIONS.
(b) NATURALENDCONDITIONS.

(u)

"7

FIG UR[ 32. = EXNIPLES OF CURVES GENERATED BY USING PARAMETRIC CUBIC SPLINE INIERPOLAI ION.

IRAH I) AND NODAL POINTS ARE DENOTTI] BY I,.-.

IIIE CURVES ARE COMPUIER GEN-
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5.0

2._

1.0

0._
O.O

i I

2.0

rxa,

i

3.0

3°0 -

region of extreme local
curvature

J 2.0

\
Y

4.0 .0

(a) CURVE BEING APPROXIMATED.

(b) CUBIC SPLINE APPROXIMATION.

I

wiggles -_

2.0 3.C 4.0

. (c)

I

5.c

FIGURE 3-3. - CASE WItEREA CUBIC SPLINE POSSESSESUNDESIRABLEWIGGLES. CURVE IN (b) IS COMPUTERGENERATEDAND NODALPOINTS ARE

DENOTEDBY=,-.

v

.T.O

2._

,.3

X

= = =

I ! ' | I I

0.0 !.C 2.0 3.0 4.0 5.0

FIGURE 3-q. - A PARAMETRICTENSION SPLINE WITH 0 = 10 FOR THE

SAMESET OF NODALPOINTS AS THE CUBIC SPLINE OF FIGURE 3-3(b).

NOTE THAT THE WIGGLES PRESENT IN THE CUBIC SPLINE SHOWNIN

FIGURE 3-3(b) HAVEBEEN REMOVED. THE CURVE IS COMPUTERGEN-

ERATED AND NODALPOINTS ARE DENOTEDBY =".
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/,+/'___v
7 --/- ;/"

c: zM

+X'-,+'7 /

//-_ 7
FIGURE 3 5. - EXAMPLES OF SURFACES WIIOSE INTERIOR REGIONS ARE "SIMILAR" TO THEIR BOUND-

ARY CURVES. BOUNDARY CURVES ARE SHOWN AS SOLID LINES, WHILE INTERIOR CURVES ARE SHOWN

AS DASIIED LINES.

"<

Surface H ---_ I y

 :zS !
" "/VIA/V

/ /4 )" ............

#;M L 1

Grid Cell

FIGURE 3-6. - POINTS ON SURFACE II GIVEN ON A RECTANGULAR x-y GRID.

I_NOIEB BY o.

NODAL POINTS ARE

Z

¢
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II_T__ \

/0_ - - _,'/
I _, T--dr, /

I.. -- .d- -J-# _.. f
... w/-, _.# -._ .-¢- 4

//-,=-*-r- r :.-7

Z,<-.,, _. ---ts..--x

FIGURE 3-7. - EXAMPLES OF SURFACES WHOSE INTERIOR REGIONS DIFFER GREATLY FROMTHEIR BOUNDARY CURVES,

BOUNDARY CURVES ARE SIIOWNAS SOLID LINES, WHILE INIERIOR CURVES ARE SHOWN AS DASHED LINES.

curve 3 curve 2 curve 4

FIGURE ]-8. - FOUR TWISIED CURVES WIIICIIINTERSECT TO FORM A CURVILINEAR "QUADRILAFERAL."
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l.O

0.@ I
_5

0.0 1 .0

FIGURE 3-9. - A COORDINATEPI.ANE IN TIIE /_-ll-_'-T COORDINATESYSTEM AT _" = O.

' .....,,,,,,,,}
_,,II,111111]

(a) (b)

(c) (d)

(a) FIRST.

(b) SECOND.

(c) THIRD.

(d) FOURTH.

FIGURE _-I0, FOUR STAGES OF TRANSFINITE BI[INEAR INIERPOLMION.
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curve 2

curve 3 _ curve 4

rS " '

curve I _T_,_

f l{_llRl _ ]I. DTFINIIIONS o; vr(IOr,g IANGfNI ANI) ORIIIOGONAI I0 curve I.

y

X

FI(311RI q 1. (_RII)SYSIEM GINERAIFI) lot AN IRREGUIAR COASIIINE TOPOLOGY BY USING TIIE TWO-BOUNDARY l_tllOl).

=--3"

GRID IS COMPUIER GENERATED.
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line of

Oisconcinuity

I1 i= 123... [1

FIGURE _t-2. _ GRID SYSTEM GENERAIEDABOVE A SHARP BEND BY USING TIlE TWO-BOUNDARYMETHOD. GRID IS COMPUTERGENERATED.

FIGURE _¢-3 - GRID SYSTEM OF FIGURE I;-2AFTER SMOOTHING.

X

GRID IS COMPUTER GENERAIED.
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a airfoil

FIGURE 4-4. - A C-GRID GENERATED ABOUI AN AIRFOIL BY USING THE TWO-BOUNDARY METHOD. GRID IS COMPUTER GENERATED.

t
'/ _x_,_

!! .........

FIGUR[ 11-5. - GRID GENERATED FOR AN IRREGULARLY SIIAPED, FOUR-SIDED REGION BY USING TIIE FOUR-BOUNDArY MEIIIOD.

GFNf RAIFD.

3

GRID IS cOMPUIER
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FIGURE q-G. GRID GENERATEDP,ETNEEN TilE BLADESOF _ RADIAL TURBINE BY USING THE TgO-BOUNDARYMETHOD. GRID IS COMPUTERGENERATED.

I external flow_

l internal flow

CF_NTER 80DY -_.___

L line of symmetry

FIGURE q-7. - TWO-DIMENSIONAL INLET OF TURBOJET ENGINE.



_--curve 7

_curve 3

curve 6 -_
1.0

ZONE 2

curve 5 I-'___
0. 5

ZONE I _curve :_

curve I_ I x 0.0

curve 6_

curve

ZONE 2

curve 5--_

_curve 3

=

ZONE i
Curve

curve ::-_

._°j

(a) IN x-y COORDINAIE SYSTEM.

(b) IN _-q COORDINATE SYSTEM.

FIGURE 4-8. - PARTITIONING TIIE SPATIAL DOMAIN INIO ZONES.

Inflow

Main :low J
2u<flow_

1

FIGURE II-9. - 1WO-DIMFNSIONAI RIGION SIIOWING SLOIS CUT INTO WAll_ OF WIND TUNNEL.
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zone 1

x

zone I

zone !

zone 2

zone i

zone 2

zone

(a) PARTITION WITH SIX ZONES.

(b) PARTITION WITIITHREE ZONES,

FIGURE 4-I0. - TWO POSSIBLE PARTITIONS FOR THE SPATIAL DOMAIN SIIOWN IN FIGURE _-9.

/

• C

0

FIGURE q-ll. - APPROXIMATIONS OF CURVES I, 2, S AND 6 OBTAINED BY USING PARAMETRIC

TENSION SPLINE INTERPOLATION. /HE CURVES ARE COMPUTER GENERATED AND NODAL POINTS

ARE IENOIED BY o
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boundary curve a

discontinuities at a

zonal interface

1 interface

_boundary curve b

F IGIIRF _1--12. - AN EXAMPI.E OF SI OPF DISEONIINIIIIIES PRESENT IN GRID LINES

WtlIEII CROSS A ZONAl INT[rIAEI.

}L1

JL

JL 1

ZL

(a)

(a) IN TIIE SPAIlAL DOMAIN.

(b) IN THE TRANSFORMED DOMAIN.

FIGURE _-13. - GRID SYSTEM.

!
I

(b)

]
II

1

i 5
r,
_L
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CENTER BODY

COWL

FIGURE 1t-14. - GRID SYSIEM IN ItlE SPATIAL DOMAIN AFTER STRETCHING.

x

_Im,--

GRID IS COMPUTER GENERATED
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